35 resultados para ecosystem change
em CentAUR: Central Archive University of Reading - UK
Resumo:
Climate change science is increasingly concerned with methods for managing and integrating sources of uncertainty from emission storylines, climate model projections, and ecosystem model parameterizations. In tropical ecosystems, regional climate projections and modeled ecosystem responses vary greatly, leading to a significant source of uncertainty in global biogeochemical accounting and possible future climate feedbacks. Here, we combine an ensemble of IPCC-AR4 climate change projections for the Amazon Basin (eight general circulation models) with alternative ecosystem parameter sets for the dynamic global vegetation model, LPJmL. We evaluate LPJmL simulations of carbon stocks and fluxes against flux tower and aboveground biomass datasets for individual sites and the entire basin. Variability in LPJmL model sensitivity to future climate change is primarily related to light and water limitations through biochemical and water-balance-related parameters. Temperature-dependent parameters related to plant respiration and photosynthesis appear to be less important than vegetation dynamics (and their parameters) for determining the magnitude of ecosystem response to climate change. Variance partitioning approaches reveal that relationships between uncertainty from ecosystem dynamics and climate projections are dependent on geographic location and the targeted ecosystem process. Parameter uncertainty from the LPJmL model does not affect the trajectory of ecosystem response for a given climate change scenario and the primary source of uncertainty for Amazon 'dieback' results from the uncertainty among climate projections. Our approach for describing uncertainty is applicable for informing and prioritizing policy options related to mitigation and adaptation where long-term investments are required.
Resumo:
This report forms part of a larger research programme on 'Reinterpreting the Urban-Rural Continuum', which conceptualises and investigates current knowledge and research gaps concerning 'the role that ecosystems services play in the livelihoods of the poor in regions undergoing rapid change'. The report aims to conduct a baseline appraisal of water-dependant ecosystem services, the roles they play within desakota livelihood systems and their potential sensitivity to climate change. The appraisal is conducted at three spatial scales: global, regional (four consortia areas), and meso scale (case studies within the four regions). At all three scales of analysis water resources form the interweaving theme because water provides a vital provisioning service for people, supports all other ecosystem processes and because water resources are forecast to be severely affected under climate change scenarios. This report, combined with an Endnote library of over 1100 scientific papers, provides an annotated bibliography of water-dependant ecosystem services, the roles they play within desakota livelihood systems and their potential sensitivity to climate change. After an introductory, section, Section 2 of the report defines water-related ecosystem services and how these are affected by human activities. Current knowledge and research gaps are then explored in relation to global scale climate and related hydrological changes (e.g. floods, droughts, flow regimes) (section 3). The report then discusses the impacts of climate changes on the ESPA regions, emphasising potential responses of biomes to the combined effects of climate change and human activities (particularly land use and management), and how these effects coupled with water store and flow regime manipulation by humans may affect the functioning of catchments and their ecosystem services (section 4). Finally, at the meso-scale, case studies are presented from within the ESPA regions to illustrate the close coupling of human activities and catchment performance in the context of environmental change (section 5). At the end of each section, research needs are identified and justified. These research needs are then amalgamated in section 6.
Resumo:
Many ecosystem services are delivered by organisms that depend on habitats that are segregated spatially or temporally from the location where services are provided. Management of mobile organisms contributing to ecosystem services requires consideration not only of the local scale where services are delivered, but also the distribution of resources at the landscape scale, and the foraging ranges and dispersal movements of the mobile agents. We develop a conceptual model for exploring how one such mobile-agent-based ecosystem service (MABES), pollination, is affected by land-use change, and then generalize the model to other MABES. The model includes interactions and feedbacks among policies affecting land use, market forces and the biology of the organisms involved. Animal-mediated pollination contributes to the production of goods of value to humans such as crops; it also bolsters reproduction of wild plants on which other services or service-providing organisms depend. About one-third of crop production depends on animal pollinators, while 60-90% of plant species require an animal pollinator. The sensitivity of mobile organisms to ecological factors that operate across spatial scales makes the services provided by a given community of mobile agents highly contextual. Services vary, depending on the spatial and temporal distribution of resources surrounding the site, and on biotic interactions occurring locally, such as competition among pollinators for resources, and among plants for pollinators. The value of the resulting goods or services may feed back via market-based forces to influence land-use policies, which in turn influence land management practices that alter local habitat conditions and landscape structure. Developing conceptual models for MABES aids in identifying knowledge gaps, determining research priorities, and targeting interventions that can be applied in an adaptive management context.
Resumo:
Targets for stabilizing climate change are often based on considerations of the impacts of different levels of global warming, usually assessing the time of reaching a particular level of warming. However, some aspects of the Earth system, such as global mean temperatures1 and sea level rise due to thermal expansion2 or the melting of large ice sheets3, continue to respond long after the stabilization of radiative forcing. Here we use a coupled climate–vegetation model to show that in turn the terrestrial biosphere shows significant inertia in its response to climate change. We demonstrate that the global terrestrial biosphere can continue to change for decades after climate stabilization. We suggest that ecosystems can be committed to long-term change long before any response is observable: for example, we find that the risk of significant loss of forest cover in Amazonia rises rapidly for a global mean temperature rise above 2 °C. We conclude that such committed ecosystem changes must be considered in the definition of dangerous climate change, and subsequent policy development to avoid it.
Resumo:
Human population growth and resource use, mediated by changes in climate, land use, and water use, increasingly impact biodiversity and ecosystem services provision. However, impacts of these drivers on biodiversity and ecosystem services are rarely analyzed simultaneously and remain largely unknown. An emerging question is how science can improve the understanding of change in biodiversity and ecosystem service delivery and of potential feedback mechanisms of adaptive governance. We analyzed past and future change in drivers in south-central Sweden. We used the analysis to identify main research challenges and outline important research tasks. Since the 19th century, our study area has experienced substantial and interlinked changes; a 1.6°C temperature increase, rapid population growth, urbanization, and massive changes in land use and water use. Considerable future changes are also projected until the mid-21st century. However, little is known about the impacts on biodiversity and ecosystem services so far, and this in turn hampers future projections of such effects. Therefore, we urge scientists to explore interdisciplinary approaches designed to investigate change in multiple drivers, underlying mechanisms, and interactions over time, including assessment and analysis of matching-scale data from several disciplines. Such a perspective is needed for science to contribute to adaptive governance by constantly improving the understanding of linked change complexities and their impacts.
Resumo:
Land use and land cover changes in the Brazilian Amazon have major implications for regional and global carbon (C) cycling. Cattle pasture represents the largest single use (about 70%) of this once-forested land in most of the region. The main objective of this study was to evaluate the accuracy of the RothC and Century models at estimating soil organic C (SOC) changes under forest-to-pasture conditions in the Brazilian Amazon. We used data from 11 site-specific 'forest to pasture' chronosequences with the Century Ecosystem Model (Century 4.0) and the Rothamsted C Model (RothC 26.3). The models predicted that forest clearance and conversion to well managed pasture would cause an initial decline in soil C stocks (0-20 cm depth), followed in the majority of cases by a slow rise to levels exceeding those under native forest. One exception to this pattern was a chronosequence in Suia-Missu, which is under degraded pasture. In three other chronosequences the recovery of soil C under pasture appeared to be only to about the same level as under the previous forest. Statistical tests were applied to determine levels of agreement between simulated SOC stocks and observed stocks for all the sites within the 11 chronosequences. The models also provided reasonable estimates (coefficient of correlation = 0.8) of the microbial biomass C in the 0-10 cm soil layer for three chronosequences, when compared with available measured data. The Century model adequately predicted the magnitude and the overall trend in delta C-13 for the six chronosequences where measured 813 C data were available. This study gave independent tests of model performance, as no adjustments were made to the models to generate outputs. Our results suggest that modelling techniques can be successfully used for monitoring soil C stocks and changes, allowing both the identification of current patterns in the soil and the projection of future conditions. Results were used and discussed not only to evaluate soil C dynamics but also to indicate soil C sequestration opportunities for the Brazilian Amazon region. Moreover, modelling studies in these 'forest to pasture' systems have important applications, for example, the calculation of CO, emissions from land use change in national greenhouse gas inventories. (0 2007 Elsevier B.V. All rights reserved.
Resumo:
Although tree nutrition has not been the primary focus of large climate change experiments on trees, we are beginning to understand its links to elevated atmospheric CO2 and temperature changes. This review focuses on the major nutrients, namely N and P, and deals with the effects of climate change on the processes that alter their cycling and availability. Current knowledge regarding biotic and abiotic agents of weathering, mobilization and immobilization of these elements will be discussed. To date, controlled environment studies have identified possible effects of climate change on tree nutrition. Only some of these findings, however, were verified in ecosystem scale experiments. Moreover, to be able to predict future effects of climate change on tree nutrition at this scale, we need to progress from studying effects of single factors to analysing interactions between factors such as elevated CO2, temperature or water availability.
Resumo:
Global change may substantially affect biodiversity and ecosystem functioning but little is known about its effects on essential biotic interactions. Since different environmental drivers rarely act in isolation it is important to consider interactive effects. Here, we focus on how two key drivers of anthropogenic environmental change, climate change and the introduction of alien species, affect plant–pollinator interactions. Based on a literature survey we identify climatically sensitive aspects of species interactions, assess potential effects of climate change on these mechanisms, and derive hypotheses that may form the basis of future research. We find that both climate change and alien species will ultimately lead to the creation of novel communities. In these communities certain interactions may no longer occur while there will also be potential for the emergence of new relationships. Alien species can both partly compensate for the often negative effects of climate change but also amplify them in some cases. Since potential positive effects are often restricted to generalist interactions among species, climate change and alien species in combination can result in significant threats to more specialist interactions involving native species.
Resumo:
We quantify the risks of climate-induced changes in key ecosystem processes during the 21st century by forcing a dynamic global vegetation model with multiple scenarios from 16 climate models and mapping the proportions of model runs showing forest/nonforest shifts or exceedance of natural variability in wildfire frequency and freshwater supply. Our analysis does not assign probabilities to scenarios or weights to models. Instead, we consider distribution of outcomes within three sets of model runs grouped by the amount of global warming they simulate: <2°C (including simulations in which atmospheric composition is held constant, i.e., in which the only climate change is due to greenhouse gases already emitted), 2–3°C, and >3°C. High risk of forest loss is shown for Eurasia, eastern China, Canada, Central America, and Amazonia, with forest extensions into the Arctic and semiarid savannas; more frequent wildfire in Amazonia, the far north, and many semiarid regions; more runoff north of 50°N and in tropical Africa and northwestern South America; and less runoff in West Africa, Central America, southern Europe, and the eastern U.S. Substantially larger areas are affected for global warming >3°C than for <2°C; some features appear only at higher warming levels. A land carbon sink of ≈1 Pg of C per yr is simulated for the late 20th century, but for >3°C this sink converts to a carbon source during the 21st century (implying a positive climate feedback) in 44% of cases. The risks continue increasing over the following 200 years, even with atmospheric composition held constant.
Resumo:
We summarise the work of an interdisciplinary network set up to explore the impacts of climate change in the British Uplands. In this CR Special, the contributors present the state of knowledge and this introduction synthesises this knowledge and derives implications for decision makers. The Uplands are valued semi-natural habitats, providing ecosystem services that have historically been taken for granted. For example, peat soils, which are mostly found in the Uplands, contain around 50% of the terrestrial carbon in the UK. Land management continues to be a driver of ecosystem service delivery. Degraded and managed peatlands are subject to erosion and carbon loss with negative impacts on biodiversity, carbon storage and water quality. Climate change is already being experienced in British Uplands and is likely to exacerbate these pressures. Climate envelope models suggest as much as 50% of British Uplands and peatlands will be exposed to climate stress by the end of the 21st century under low and high emissions scenarios. However, process-based models of the response of organic soils to this climate stress do not give a consistent indication of what this will mean for soil carbon: results range from a very slight increase in uptake, through a clear decline, to a net carbon loss. Preserving existing peat stocks is an important climate mitigation strategy, even if new peat stops forming. Preserving upland vegetation cover is a key win–win management strategy that will reduce erosion and loss of soil carbon, and protect a variety of services such as the continued delivery of a high quality water resource.
Resumo:
There is concern that insect pollinators, such as honey bees, are currently declining in abundance, and are under serious threat from environmental changes such as habitat loss and climate change; the use of pesticides in intensive agriculture, and emerging diseases. This paper aims to evaluate how much public support there would be in preventing further decline to maintain the current number of bee colonies in the UK. The contingent valuation method (CVM) was used to obtain the willingness to pay (WTP) for a theoretical pollinator protection policy. Respondents were asked whether they would be WTP to support such a policy and how much would they pay? Results show that the mean WTP to support the bee protection policy was £1.37/week/household. Based on there being 24.9 million households in the UK, this is equivalent to £1.77 billion per year. This total value can show the importance of maintaining the overall pollination service to policy makers. We compare this total with estimates obtained using a simple market valuation of pollination for the UK.
Resumo:
The influence of the environment and environmental change is largely unrepresented in standard theories of migration, whilst recent debates on climate change and migration focus almost entirely on displacement and perceive migration to be a problem. Drawing on an increasing evidence base that has assessed elements of the influence of the environment on migration, this paper presents a new framework for understanding the effect of environmental change on migration. The framework identifies five families of drivers which affect migration decisions: economic, political, social, demographic and environmental drivers. The environment drives migration through mechanisms characterised as the availability and reliability of ecosystem services and exposure to hazard. Individual migration decisions and flows are affected by these drivers operating in combination, and the effect of the environment is therefore highly dependent on economic, political, social and demographic context. Environmental change has the potential to affect directly the hazardousness of place. Environmental change also affects migration indirectly, in particular through economic drivers, by changing livelihoods for example, and political drivers, through affecting conflicts over resources, for example. The proposed framework, applicable to both international and internal migration, emphasises the role of human agency in migration decisions, in particular the linked role of family and household characteristics on the one hand, and barriers and facilitators to movement on the other in translating drivers into actions. The framework can be used to guide new research, assist with the evaluation of policy options, and provide a context for the development of scenarios representing a range of plausible migration futures.