6 resultados para ecological design

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sampling strategies for monitoring the status and trends in wildlife populations are often determined before the first survey is undertaken. However, there may be little information about the distribution of the population and so the sample design may be inefficient. Through time, as data are collected, more information about the distribution of animals in the survey region is obtained but it can be difficult to incorporate this information in the survey design. This paper introduces a framework for monitoring motile wildlife populations within which the design of future surveys can be adapted using data from past surveys whilst ensuring consistency in design-based estimates of status and trends through time. In each survey, part of the sample is selected from the previous survey sample using simple random sampling. The rest is selected with inclusion probability proportional to predicted abundance. Abundance is predicted using a model constructed from previous survey data and covariates for the whole survey region. Unbiased design-based estimators of status and trends and their variances are derived from two-phase sampling theory. Simulations over the short and long-term indicate that in general more precise estimates of status and trends are obtained using this mixed strategy than a strategy in which all of the sample is retained or all selected with probability proportional to predicted abundance. Furthermore the mixed strategy is robust to poor predictions of abundance. Estimates of status are more precise than those obtained from a rotating panel design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geotechnical systems, such as landfills, mine tailings storage facilities (TSFs), slopes, and levees, are required to perform safely throughout their service life, which can span from decades for levees to “in perpetuity” for TSFs. The conventional design practice by geotechnical engineers for these systems utilizes the as-built material properties to predict its performance throughout the required service life. The implicit assumption in this design methodology is that the soil properties are stable through time. This is counter to long-term field observations of these systems, particularly where ecological processes such as plant, animal, biological, and geochemical activity are present. Plant roots can densify soil and/or increase hydraulic conductivity, burrowing animals can increase seepage, biological activity can strengthen soil, geochemical processes can increase stiffness, etc. The engineering soil properties naturally change as a stable ecological system is gradually established following initial construction, and these changes alter system performance. This paper presents an integrated perspective and new approach to this issue, considering ecological, geotechnical, and mining demands and constraints. A series of data sets and case histories are utilized to examine these issues and to propose a more integrated design approach, and consideration is given to future opportunities to manage engineered landscapes as ecological systems. We conclude that soil scientists and restoration ecologists must be engaged in initial project design and geotechnical engineers must be active in long-term management during the facility’s service life. For near-surface geotechnical structures in particular, this requires an interdisciplinary perspective and the embracing of soil as a living ecological system rather than an inert construction material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of economic incentives for biodiversity (mostly Compensation and Reward for Environmental Services including Payment for ES) has been widely supported in the past decades and became the main innovative policy tools for biodiversity conservation worldwide. These policy tools are often based on the insight that rational actors perfectly weigh the costs and benefits of adopting certain behaviors and well-crafted economic incentives and disincentives will lead to socially desirable development scenarios. This rationalist mode of thought has provided interesting insights and results, but it also misestimates the context by which ‘real individuals’ come to decisions, and the multitude of factors influencing development sequences. In this study, our goal is to examine how these policies can take advantage of some unintended behavioral reactions that might in return impact, either positively or negatively, general policy performances. We test the effect of income's origin (‘Low effort’ based money vs. ‘High effort’ based money) on spending decisions (Necessity vs. Superior goods) and subsequent pro social preferences (Future pro-environmental behavior) within Madagascar rural areas, using a natural field experiment. Our results show that money obtained under low effort leads to different consumption patterns than money obtained under high efforts: superior goods are more salient in the case of low effort money. In parallel, money obtained under low effort leads to subsequent higher pro social behavior. Compensation and rewards policies for ecosystem services may mobilize knowledge on behavioral biases to improve their design and foster positive spillovers on their development goals.