6 resultados para eclipses
em CentAUR: Central Archive University of Reading - UK
Resumo:
Measurements of the ionospheric E-region during total solar eclipses have been used to provide information about the evolution of the solar magnetic field and EUV and X-ray emissions from the solar corona and chromosphere. By measuring levels of ionisation during an eclipse and comparing these measurements with an estimate of the unperturbed ionisation levels (such as those made during a control day, where available) it is possible to estimate the percentage of ionising radiation being emitted by the solar corona and chromosphere. Previously unpublished data from the two eclipses presented here are particularly valuable as they provide information that supplements the data published to date. The eclipse of 23 October 1976 over Australia provides information in a data gap that would otherwise have spanned the years 1966 to 1991. The eclipse of 4 December 2002 over Southern Africa is important as it extends the published sequence of measurements. Comparing measurements from eclipses between 1932 and 2002 with the solar magnetic source flux reveals that changes in the solar EUV and X-ray flux lag the open source flux measurements by approximately 1.5 years. We suggest that this unexpected result comes about from changes to the relative size of the limb corona between eclipses, with the lag representing the time taken to populate the coronal field with plasma hot enough to emit the EUV and X-rays ionising our atmosphere.
Resumo:
Measurements of the ionospheric E region during total solar eclipses in the period 1932-1999 have been used to investigate the fraction of Extreme Ultra Violet and soft X-ray radiation, phi, that is emitted from the limb corona and chromosphere. The relative apparent sizes of the Moon and the Sun are different for each eclipse, and techniques are presented which correct the measurements and, therefore, allow direct comparisons between different eclipses. The results show that the fraction of ionising radiation emitted by the limb corona has a clear solar cycle variation and that the underlying trend shows this fraction has been increasing since 1932. Data from the SOHO spacecraft are used to study the effects of short-term variability and it is shown that the observed long-term rise in phi has a negligible probability of being a chance occurrence.
Resumo:
Swept-frequency (1-10 MHz) ionosonde measurements were made at Helston, Cornwall (50 degrees 06'N, 5 degrees 18'W) during the total solar eclipse on August 11, 1999. Soundings were made every three minutes. We present a method for estimating the percentage of the ionising solar radiation which remains unobscured at any time during the eclipse by comparing the variation of the ionospheric E-layer with the behaviour of the layer during a control day. Application to the ionosonde date for II August, 1999, shows that the flux of solar ionising radiation fell to a minimum of 25 +/- 2% of the value before and after the eclipse. For comparison, the same technique was also applied to measurements made during the total solar eclipse of 9 July, 1945, at Sormjole (63 degrees 68'N, 20 degrees 20'E) and yielded a corresponding minimum of 16 +/- 2%. Therefore the method can detect variations in the fraction of solar emissions that originate from the unobscured corona and chromosphere. We discuss the differences between these two eclipses in terms of the nature of the eclipse, short-term fluctuations, the sunspot cycle and the recently-discovered long-term change in the coronal magnetic field.
Resumo:
The structures of benzoic acid (C6H5COOH) and 2-hydroxybenzoic acid (C6H4OHCOOH) have been determined in the gas phase by electron diffraction using results from quantum chemical calculations to inform restraints used on the structural parameters. Theoretical methods (HF and MP2/6-311+G(d, p)) predict two conformers for benzoic acid, one which is 25.0 kJ mol(-1) (MP2) lower in energy than the other. In the low-energy form, the carboxyl group is coplanar with the phenyl ring and the O-H group eclipses the C=O bond. Theoretical calculations (HF and MP2/6-311+ G(d, p)) carried out for 2-hydroxybenzoic acid gave evidence for seven stable conformers but one low-energy form (11.7 kJ mol-1 lower in energy (MP2)) which again has the carboxyl group coplanar with the phenyl ring, the O-H of the carboxyl group eclipsing the C=O bond and the C=O of the carboxyl group oriented toward the O-H group of the phenyl ring. The effects of internal hydrogen bonding in 2-hydroxybenzoic acid can be clearly observed by comparison of pertinent structural parameters between the two compounds. These differences for 2-hydroxybenzoic acid include a shorter exocyclic C-C bond, a lengthening of the ring C-C bond between the substituents, and a shortening of the carboxylic single C-O bond.
Resumo:
Responses in surface winds to solar eclipses have an almost mystical status but are difficult to detect in observations because of their transient nature. High spatial resolution (approx. 1.5 km grid) meteorological models now provide a new technique for their investigation. Measurements from the southern UK meteorological network during the 11 August 1999 total solar eclipse are compared with a high-resolution model ignorant of the lunar shadow’s influence. Differences between the model output and measurements at the eclipse time show transient eclipse zone temperature decreases of up to 3 degrees C, which also depressed the day’s maximum temperature compared with the model prediction. Coherent responses in temperature, and wind speed and direction measurements are detected in the inland cloud-free region (from 51 to 52 degrees N and −2 to 0 degrees E). A mean regional wind speed decrease of 0.7 m s−1 during the maximum eclipse hour is apparent with a mean anticlockwise wind direction change of 17 degrees; no such changes occurred in the model output. Such regional circulation changes are consistent with Clayton’s 1901 cold-cored eclipse cyclone hypothesis, which may be related to the anecdotal ‘eclipse wind’.
Resumo:
Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud.Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20th March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44N, 0.94W), Lerwick (60.15N, 1.13W) and Reykjavik (64.13N, 21.90W), straddling the path of the eclipse.The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming the sensing surface becomes normal to the solar beam direction at a maximum swing. Both approaches, essentially independent,give values that agree with theoretical expectations for the eclipse-induced radiation changes.