73 resultados para dynamic factor models
em CentAUR: Central Archive University of Reading - UK
Combining altimetric/gravimetric and ocean model mean dynamic topography models in the GOCINA region
Resumo:
This paper presents a hybrid control strategy integrating dynamic neural networks and feedback linearization into a predictive control scheme. Feedback linearization is an important nonlinear control technique which transforms a nonlinear system into a linear system using nonlinear transformations and a model of the plant. In this work, empirical models based on dynamic neural networks have been employed. Dynamic neural networks are mathematical structures described by differential equations, which can be trained to approximate general nonlinear systems. A case study based on a mixing process is presented.
Resumo:
Inverse problems for dynamical system models of cognitive processes comprise the determination of synaptic weight matrices or kernel functions for neural networks or neural/dynamic field models, respectively. We introduce dynamic cognitive modeling as a three tier top-down approach where cognitive processes are first described as algorithms that operate on complex symbolic data structures. Second, symbolic expressions and operations are represented by states and transformations in abstract vector spaces. Third, prescribed trajectories through representation space are implemented in neurodynamical systems. We discuss the Amari equation for a neural/dynamic field theory as a special case and show that the kernel construction problem is particularly ill-posed. We suggest a Tikhonov-Hebbian learning method as regularization technique and demonstrate its validity and robustness for basic examples of cognitive computations.
Resumo:
Factor forecasting models are shown to deliver real-time gains over autoregressive models for US real activity variables during the recent period, but are less successful for nominal variables. The gains are largely due to the Financial Crisis period, and are primarily at the shortest (one quarter ahead) horizon. Excluding the pre-Great Moderation years from the factor forecasting model estimation period (but not from the data used to extract factors) results in a marked fillip in factor model forecast accuracy, but does the same for the AR model forecasts. The relative performance of the factor models compared to the AR models is largely unaffected by whether the exercise is in real time or is pseudo out-of-sample.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
In the past decade, a number of mechanistic, dynamic simulation models of several components of the dairy production system have become available. However their use has been limited due to the detailed technical knowledge and special software required to run them, and the lack of compatibility between models in predicting various metabolic processes in the animal. The first objective of the current study was to integrate the dynamic models of [Brit. J. Nutr. 72 (1994) 679] on rumen function, [J. Anim. Sci. 79 (2001) 1584] on methane production, [J. Anim. Sci. 80 (2002) 2481 on N partition, and a new model of P partition. The second objective was to construct a decision support system to analyse nutrient partition between animal and environment. The integrated model combines key environmental pollutants such as N, P and methane within a nutrient-based feed evaluation system. The model was run under different scenarios and the sensitivity of various parameters analysed. A comparison of predictions from the integrated model with the original simulation models showed an improvement in N excretion since the integrated model uses the dynamic model of [Brit. J. Nutr. 72 (1994) 6791 to predict microbial N, which was not represented in detail in the original model. The integrated model can be used to investigate the degree to which production and environmental objectives are antagonistic, and it may help to explain and understand the complex mechanisms involved at the ruminal and metabolic levels. A part of the integrated model outputs were the forms of N and P in excreta and methane, which can be used as indices of environmental pollution. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Previous attempts to apply statistical models, which correlate nutrient intake with methane production, have been of limited. value where predictions are obtained for nutrient intakes and diet types outside those. used in model construction. Dynamic mechanistic models have proved more suitable for extrapolation, but they remain computationally expensive and are not applied easily in practical situations. The first objective of this research focused on employing conventional techniques to generate statistical models of methane production appropriate to United Kingdom dairy systems. The second objective was to evaluate these models and a model published previously using both United Kingdom and North American data sets. Thirdly, nonlinear models were considered as alternatives to the conventional linear regressions. The United Kingdom calorimetry data used to construct the linear models also were used to develop the three. nonlinear alternatives that were ball of modified Mitscherlich (monomolecular) form. Of the linear models tested,, an equation from the literature proved most reliable across the full range of evaluation data (root mean square prediction error = 21.3%). However, the Mitscherlich models demonstrated the greatest degree of adaptability across diet types and intake level. The most successful model for simulating the independent data was a modified Mitscherlich equation with the steepness parameter set to represent dietary starch-to-ADF ratio (root mean square prediction error = 20.6%). However, when such data were unavailable, simpler Mitscherlich forms relating dry matter or metabolizable energy intake to methane production remained better alternatives relative to their linear counterparts.
Resumo:
This study examines the relation between corporate social performance and stock returns in the UK. We closely evaluate the interactions between social and financial performance with a set of disaggregated social performance indicators for environment, employment, and community activities instead of using an aggregate measure. While scores on a composite social performance indicator are negatively related to stock returns, we find the poor financial reward offered by such firms is attributable to their good social performance on the environment and, to a lesser extent, the community aspects. Considerable abnormal returns are available from holding a portfolio of the socially least desirable stocks. These relationships between social and financial performance can be rationalized by multi-factor models for explaining the cross-sectional variation in returns, but not by industry effects.
Resumo:
Large-scale bottom-up estimates of terrestrial carbon fluxes, whether based on models or inventory, are highly dependent on the assumed land cover. Most current land cover and land cover change maps are based on satellite data and are likely to be so for the foreseeable future. However, these maps show large differences, both at the class level and when transformed into Plant Functional Types (PFTs), and these can lead to large differences in terrestrial CO2 fluxes estimated by Dynamic Vegetation Models. In this study the Sheffield Dynamic Global Vegetation Model is used. We compare PFT maps and the resulting fluxes arising from the use of widely available moderate (1 km) resolution satellite-derived land cover maps (the Global Land Cover 2000 and several MODIS classification schemes), with fluxes calculated using a reference high (25 m) resolution land cover map specific to Great Britain (the Land Cover Map 2000). We demonstrate that uncertainty is introduced into carbon flux calculations by (1) incorrect or uncertain assignment of land cover classes to PFTs; (2) information loss at coarser resolutions; (3) difficulty in discriminating some vegetation types from satellite data. When averaged over Great Britain, modeled CO2 fluxes derived using the different 1 km resolution maps differ from estimates made using the reference map. The ranges of these differences are 254 gC m−2 a−1 in Gross Primary Production (GPP); 133 gC m−2 a−1 in Net Primary Production (NPP); and 43 gC m−2 a−1 in Net Ecosystem Production (NEP). In GPP this accounts for differences of −15.8% to 8.8%. Results for living biomass exhibit a range of 1109 gC m−2. The types of uncertainties due to land cover confusion are likely to be representative of many parts of the world, especially heterogeneous landscapes such as those found in western Europe.
Resumo:
We consider forecasting with factors, variables and both, modeling in-sample using Autometrics so all principal components and variables can be included jointly, while tackling multiple breaks by impulse-indicator saturation. A forecast-error taxonomy for factor models highlights the impacts of location shifts on forecast-error biases. Forecasting US GDP over 1-, 4- and 8-step horizons using the dataset from Stock and Watson (2009) updated to 2011:2 shows factor models are more useful for nowcasting or short-term forecasting, but their relative performance declines as the forecast horizon increases. Forecasts for GDP levels highlight the need for robust strategies, such as intercept corrections or differencing, when location shifts occur as in the recent financial crisis.
Resumo:
Models play a vital role in supporting a range of activities in numerous domains. We rely on models to support the design, visualisation, analysis and representation of parts of the world around us, and as such significant research effort has been invested into numerous areas of modelling; including support for model semantics, dynamic states and behaviour, temporal data storage and visualisation. Whilst these efforts have increased our capabilities and allowed us to create increasingly powerful software-based models, the process of developing models, supporting tools and /or data structures remains difficult, expensive and error-prone. In this paper we define from literature the key factors in assessing a model’s quality and usefulness: semantic richness, support for dynamic states and object behaviour, temporal data storage and visualisation. We also identify a number of shortcomings in both existing modelling standards and model development processes and propose a unified generic process to guide users through the development of semantically rich, dynamic and temporal models.