55 resultados para driver information systems, genetic algorithms, prediction theory, transportation
em CentAUR: Central Archive University of Reading - UK
Resumo:
An extensive set of machine learning and pattern classification techniques trained and tested on KDD dataset failed in detecting most of the user-to-root attacks. This paper aims to provide an approach for mitigating negative aspects of the mentioned dataset, which led to low detection rates. Genetic algorithm is employed to implement rules for detecting various types of attacks. Rules are formed of the features of the dataset identified as the most important ones for each attack type. In this way we introduce high level of generality and thus achieve high detection rates, but also gain high reduction of the system training time. Thenceforth we re-check the decision of the user-to- root rules with the rules that detect other types of attacks. In this way we decrease the false-positive rate. The model was verified on KDD 99, demonstrating higher detection rates than those reported by the state- of-the-art while maintaining low false-positive rate.
Resumo:
Genetic algorithms (GAs) have been introduced into site layout planning as reported in a number of studies. In these studies, the objective functions were defined so as to employ the GAs in searching for the optimal site layout. However, few studies have been carried out to investigate the actual closeness of relationships between site facilities; it is these relationships that ultimately govern the site layout. This study has determined that the underlying factors of site layout planning for medium-size projects include work flow, personnel flow, safety and environment, and personal preferences. By finding the weightings on these factors and the corresponding closeness indices between each facility, a closeness relationship has been deduced. Two contemporary mathematical approaches - fuzzy logic theory and an entropy measure - were adopted in finding these results in order to minimize the uncertainty and vagueness of the collected data and improve the quality of the information. GAs were then applied to searching for the optimal site layout in a medium-size government project using the GeneHunter software. The objective function involved minimizing the total travel distance. An optimal layout was obtained within a short time. This reveals that the application of GA to site layout planning is highly promising and efficient.
Resumo:
The authors present a systolic design for a simple GA mechanism which provides high throughput and unidirectional pipelining by exploiting the inherent parallelism in the genetic operators. The design computes in O(N+G) time steps using O(N2) cells where N is the population size and G is the chromosome length. The area of the device is independent of the chromosome length and so can be easily scaled by replicating the arrays or by employing fine-grain migration. The array is generic in the sense that it does not rely on the fitness function and can be used as an accelerator for any GA application using uniform crossover between pairs of chromosomes. The design can also be used in hybrid systems as an add-on to complement existing designs and methods for fitness function acceleration and island-style population management
Resumo:
The study of intuition is an emerging area of research in psychology, social sciences, and business studies. It is increasingly of interest to the study of management, for example in decision-making as a counterpoint to structured approaches. Recently work has been undertaken to conceptualize a construct for the intuitive nature of technology. However to-date there is no common under-standing of the term intuition in information systems (IS) research. This paper extends the study of intuition in IS research by using exploratory research to cate-gorize the use of the word “intuition” and related terms in papers published in two prominent IS journals over a ten year period. The entire text of MIS Quarterly and Information Systems Research was reviewed for the years 1999 through 2008 using searchable PDF versions of these publications. As far as could be deter-mined, this is the first application of this approach in the analysis of the text of IS academic journals. The use of the word “intuition” and related terms was catego-rized using coding consistent with Grounded Theory. The focus of this research was on the first two stages of Grounded Theory analysis - the development of codes and constructs. Saturation of coding was not reached: an extended review of these publications would be required to enable theory development. Over 400 incidents of the use of “intuition”, and related terms were found in the articles reviewed. The most prominent use of the term of “intuition” was coded as “Intui-tion as Authority” in which intuition was used to validate a research objective or finding; representing approximately 37 per cent of codes assigned. The second most common coding occurred in research articles with mathematical analysis, representing about 19 per cent of the codes assigned, for example where a ma-thematical formulation or result was “intuitive”. The possibly most impactful use of the term “intuition” was “Intuition as Outcome”, representing approximately 7 per cent of all coding, which characterized research results as adding to the intui-tive understanding of a research topic or phenomena. This research contributes to a greater theoretical understanding of intuition enabling insight into the use of intuition, and the eventual development of a theory on the use of intuition in academic IS research publications. It also provides potential benefits to practi-tioners by providing insight into and validation of the use of intuition in IS man-agement. Research directions include the creation of reflective and/or formative constructs for intuition in information systems research.
Resumo:
Information systems integration aims at the interaction, information exchange and interoperability between information systems, devices and units. Research efforts have contributed in evaluation of information systems integration on the development of evaluation frameworks. To improve the usability and measurability of evaluation, a review of existing evaluation frameworks including their evolution and classifications of different interoperability levels is conducted. The theory of organisational semiotics is used for a comparative analysis of the frameworks and future work.
Resumo:
The financial crisis of 2008 led to new international regulatory controls for the governance, risk and compliance of financial services firms. Information systems play a critical role here as political, functional and social pressures may lead to the deinstitutionalization of existing structures, processes and practices. This research examines how an investment management system is introduced by a leading IT vendor across eight client sites in the post-crisis era. Using institutional theory, it examines changes in working practices occurring at the environmental and organizational levels and the ways in which technological interventions are used to apply disciplinary effects in order to prevent inappropriate behaviors. The results extend the constructs of deinstitutionalization and identify empirical predictors for the deinstitutionalization of compliance and trading practices within financial organizations.
Resumo:
Our ability to identify, acquire, store, enquire on and analyse data is increasing as never before, especially in the GIS field. Technologies are becoming available to manage a wider variety of data and to make intelligent inferences on that data. The mainstream arrival of large-scale database engines is not far away. The experience of using the first such products tells us that they will radically change data management in the GIS field.
Resumo:
This paper presents the results of the application of a parallel Genetic Algorithm (GA) in order to design a Fuzzy Proportional Integral (FPI) controller for active queue management on Internet routers. The Active Queue Management (AQM) policies are those policies of router queue management that allow the detection of network congestion, the notification of such occurrences to the hosts on the network borders, and the adoption of a suitable control policy. Two different parallel implementations of the genetic algorithm are adopted to determine an optimal configuration of the FPI controller parameters. Finally, the results of several experiments carried out on a forty nodes cluster of workstations are presented.
Resumo:
We have designed a highly parallel design for a simple genetic algorithm using a pipeline of systolic arrays. The systolic design provides high throughput and unidirectional pipelining by exploiting the implicit parallelism in the genetic operators. The design is significant because, unlike other hardware genetic algorithms, it is independent of both the fitness function and the particular chromosome length used in a problem. We have designed and simulated a version of the mutation array using Xilinix FPGA tools to investigate the feasibility of hardware implementation. A simple 5-chromosome mutation array occupies 195 CLBs and is capable of performing more than one million mutations per second. I. Introduction Genetic algorithms (GAs) are established search and optimization techniques which have been applied to a range of engineering and applied problems with considerable success [1]. They operate by maintaining a population of trial solutions encoded, using a suitable encoding scheme.
Resumo:
A parallel hardware random number generator for use with a VLSI genetic algorithm processing device is proposed. The design uses an systolic array of mixed congruential random number generators. The generators are constantly reseeded with the outputs of the proceeding generators to avoid significant biasing of the randomness of the array which would result in longer times for the algorithm to converge to a solution. 1 Introduction In recent years there has been a growing interest in developing hardware genetic algorithm devices [1, 2, 3]. A genetic algorithm (GA) is a stochastic search and optimization technique which attempts to capture the power of natural selection by evolving a population of candidate solutions by a process of selection and reproduction [4]. In keeping with the evolutionary analogy, the solutions are called chromosomes with each chromosome containing a number of genes. Chromosomes are commonly simple binary strings, the bits being the genes.
Resumo:
The ECMWF ensemble weather forecasts are generated by perturbing the initial conditions of the forecast using a subset of the singular vectors of the linearised propagator. Previous results show that when creating probabilistic forecasts from this ensemble better forecasts are obtained if the mean of the spread and the variability of the spread are calibrated separately. We show results from a simple linear model that suggest that this may be a generic property for all singular vector based ensemble forecasting systems based on only a subset of the full set of singular vectors.