4 resultados para diversification rate
em CentAUR: Central Archive University of Reading - UK
Resumo:
A phylogenetic approach was taken to investigate the evolutionary history of seed appendages in the plant family Polygalaceae (Fabales) and determine which factors might be associated with evolution of elaiosomes through comparisons to abiotic (climate) and biotic (ant species number and abundance) timelines. Molecular datasets from three plastid regions representing 160 species were used to reconstruct a phylogenetic tree of the order Fabales, focusing on Polygalaceae. Bayesian dating methods were used to estimate the age of the appearance of ant-dispersed elaiosomes in Polygalaceae, shown by likelihood optimizations to have a single origin in the family. Topology-based tests indicated a diversification rate shift associated with appearance of caruncular elaiosomes. We show that evolution of the caruncular elaiosome type currently associated with ant dispersal occurred 54.0-50.5 million year ago. This is long after an estimated increase in ant lineages in the Late Cretaceous based on molecular studies, but broadly concomitant with increasing global temperatures culminating in the Late Paleocene-Early Eocene thermal maxima. These results suggest that although most major ant clades were present when elaiosomes appeared, the environmental significance of elaiosomes may have been an important factor in success of elaiosome-bearing lineages. Ecological abundance of ants is perhaps more important than lineage numbers in determining significance of ant dispersal. Thus, our observation that elaiosomes predate increased ecological abundance of ants inferred from amber deposits could be indicative of an initial abiotic environmental function.
Resumo:
The Cape Floristic Region is exceptionally species-rich both for its area and latitude, and this diversity is highly unevenly distributed among genera. The modern flora is hypothesized to result largely from recent (post-Oligocene) speciation, and it has long been speculated that particular species-poor lineages pre-date this burst of speciation. Here, we employ molecular phylogenetic data in combination with fossil calibrations to estimate the minimum duration of Cape occupation by 14 unrelated putative relicts. Estimates vary widely between lineages (7-101 Myr ago), and when compared with the estimated timing of onset of the modern flora's radiation, it is clear that many, but possibly not all, of these lineages pre-date its establishment. Statistical comparisons of diversities with lineage age show that low species diversity of many of the putative relicts results from a lower rate of diversification than in dated Cape radiations. In other putative relicts, however, we cannot reject the possibility that they diversify at the same underlying rate as the radiations, but have been present in the Cape for insufficient time to accumulate higher diversity. Although the extremes in diversity of currently dated Cape lineages fall outside expectations under a underlying diversification rate, sampling of all Cape lineages would be required to reject this null hypothesis.
Resumo:
We describe a simple comparative method for determining whether rates of diversification are correlated with continuous traits in species-level phylogenies. This involves comparing traits of species with net speciation rate (number of nodes linking extant species with the root divided by the root to tip evolutionary distance), using a phylogenetically corrected correlation. We use simulations to examine the power of this test. We find that the approach has acceptable power to uncover relationships between speciation and a continuous trait and is robust to background random extinction; however, the power of the approach is reduced when the rate of trait evolution is decreased. The test has low power to relate diversification to traits when extinction rate is correlated with the trait. Clearly, there are inherent limitations in using only data on extant species to infer correlates of extinction; however, this approach is potentially a powerful tool in analyzing correlates of speciation.
Resumo:
t is well known that when assets are randomly-selected and combined in equal proportions in a portfolio, the risk of the portfolio declines as the number of different assets increases without affecting returns. In other words, increasing portfolio size should improve the risk/return trade-off compared with a portfolio of asset size one. Therefore, diversifying among several property funds may be a better alternative for investors compared to holding only one property fund. Nonetheless, it also well known that with naïve diversification although risk always decreases with portfolio size, it does so at a decreasing rate so that at some point the reduction in portfolio risk, from adding another fund, becomes negligible. Based on this fact, a reasonable question to ask is how much diversification is enough, or in other words, how many property funds should be included in a portfolio to minimise return volatility.