47 resultados para district cooling
em CentAUR: Central Archive University of Reading - UK
Resumo:
Using experiments with an atmospheric general circulation model, the climate impacts of a basin-scale warming or cooling of the North Atlantic Ocean are investigated. Multidecadal fluctuations with this pattern were observed during the twentieth century, and similar variations--but with larger amplitude--are believed to have occurred in the more distant past. It is found that in all seasons the response to warming the North Atlantic is strongest, in the sense of highest signal-to-noise ratio, in the Tropics. However there is a large seasonal cycle in the climate impacts. The strongest response is found in boreal summer and is associated with suppressed precipitation and elevated temperatures over the lower-latitude parts of North and South America. In August-September-October there is a significant reduction in the vertical shear in the main development region for Atlantic hurricanes. In winter and spring, temperature anomalies over land in the extratropics are governed by dynamical changes in circulation rather than simply reflecting a thermodynamic response to the warming or cooling of the ocean. The tropical climate response is primarily forced by the tropical SST anomalies, and the major features are in line with simple models of the tropical circulation response to diabatic heating anomalies. The extratropical climate response is influenced both by tropical and higher-latitude SST anomalies and exhibits nonlinear sensitivity to the sign of the SST forcing. Comparisons with multidecadal changes in sea level pressure observed in the twentieth century support the conclusion that the impact of North Atlantic SST change is most important in summer, but also suggest a significant influence in lower latitudes in autumn and winter. Significant climate impacts are not restricted to the Atlantic basin, implying that the Atlantic Ocean could be an important driver of global decadal variability. The strongest remote impacts are found to occur in the tropical Pacific region in June-August and September-November. Surface anomalies in this region have the potential to excite coupled oceanatmosphere feedbacks, which are likely to play an important role in shaping the ultimate climate response.
Resumo:
The longwave radiative cooling of the clear-sky atmosphere (Q(LWc)) is a crucial component of the global hydrological cycle and is composed of the clear-sky outgoing longwave radiation to space (OLRc) and the net downward minus upward clear-sky longwave radiation to the surface (SNLc). Estimates of QLWc from reanalyses and observations are presented for the period 1979-2004. Compared to other reanalyses data sets, the European Centre for Medium-range Weather Forecasts 40-year reanalysis (ERA40) produces the largest Q(LWc) over the tropical oceans (217 W m(-2)), explained by the least negative SNLc. On the basis of comparisons with data derived from satellite measurements, ERA40 provides the most realistic QLWc climatology over the tropical oceans but exhibits a spurious interannual variability for column integrated water vapor (CWV) and SNLc. Interannual monthly anomalies of QLWc are broadly consistent between data sets with large increases during the warm El Nino events. Since relative humidity ( RH) errors applying throughout the troposphere result in compensating effects on the cooling to space and to the surface, they exert only a marginal effect on QLWc. An observed increase in CWV with surface temperature of 3 kg m(-2) K-1 over the tropical oceans is important in explaining a positive relationship between QLWc and surface temperature, in particular over ascending regimes; over tropical ocean descending regions this relationship ranges from 3.6 to 4.6 +/- 0.4 W m(-2) K-1 for the data sets considered, consistent with idealized sensitivity tests in which tropospheric warming is applied and RH is held constant and implying an increase in precipitation with warming.
Resumo:
This paper presents an investigation of the natural ventilation cooling potential (NVCP) of office buildings in the five generally recognised climate zones in China using the Thermal Resistance Ventilation (TRV) model, which is a simplified, coupled, thermal and airflow model. The acceptable operative temperature for naturally conditioned space supplied by the ASHARE Standard 55-2004 has been used for the comfort temperature setting. Dynamic simulations for a typical office room in the five representative cities, which are Harbin, Beijing, Shanghai, Kunming and Guangzhou, have been carried out. The study demonstrates that the NVCP depends on the multiple impacts of climate, the building's thermal characteristics, internal gains, ventilation profiles and regimes. The work shows how the simplified method can be used to generate detailed, indoor, operative temperature data based on the various building conditions and control profiles which are used to investigate the NVCP at the strategic design stage. The simulation results presented in this paper can be used as a reference guideline for natural ventilation design in China.
Resumo:
Improving the quality of teaching is an educational priority in Kenya, as in many developing countries. The present paper considers various aspects of in-service education, including views on the effectiveness of in-service, teacher and headteacher priorities in determining in-service needs and the constraints on providing in-service courses. These issues are examined though an empirical study of 30 secondary headteachers and 109 teachers in a district of Kenya. The results show a strong felt need for in-service provision together with a firm belief in the efficacy of in-service in raising pupil achievement. Headteachers had a stronger belief in the need for in-service for their teachers than did the teachers themselves. The priorities of both headteachers and teachers were dominated by the external pressures of the schools, in particular the pressures for curriculum innovation and examination success. The resource constraints on supporting attendance at in-service courses were the major problems facing headteachers. The results reflect the difficulties that responding to an externally driven in-service agenda creates in a context of scarce resources.
Resumo:
Background and purpose: The paper reports a study of the perceptions of teachers in secondary schools in the Gucha district of Kenya of their own effectiveness, the structure of their self-perceptions, variations in self-perceived effectiveness and the relationship between self-perceptions of effectiveness and the examination performance of their students. Design and methods: Data were based on questionnaires completed by 109 English and mathematics teachers from a random sample of 30 schools in the Gucha district of Kenya. Pupil examination results were also collected from the schools. Results: Three dimensions of self-perceived effectiveness emerged from a factor analysis. These were: pedagogic process, personal and affective aspects of teaching and effectiveness with regard to pupil performance. Teachers tended to rate themselves relatively highly with regard to the first two, process-oriented, dimensions but less highly on the third, outcome-oriented, dimension. Self-ratings for pupil outcomes correlated with pupil examination performance at school level. Conclusions: The results show that these teachers can have a sense of themselves as competent classroom performers and educational professionals without necessarily having a strong sense of efficacy with regard to pupil outcomes.
Resumo:
Several studies have highlighted the importance of the cooling period in oil absorption in deep-fat fried products. Specifically, it has been established that the largest proportion of oil which ends up into the food, is sucked into the porous crust region after the fried product is removed from the oil bath, stressing the importance of this time interval. The main objective of this paper was to develop a predictive mechanistic model that can be used to understand the principles behind post-frying cooling oil absorption kinetics, which can also help identifying the key parameters that affect the final oil intake by the fried product. The model was developed for two different geometries, an infinite slab and an infinite cylinder, and was divided into two main sub-models, one describing the immersion frying period itself and the other describing the post-frying cooling period. The immersion frying period was described by a transient moving-front model that considered the movement of the crust/core interface, whereas post-frying cooling oil absorption was considered to be a pressure driven flow mediated by capillary forces. A key element in the model was the hypothesis that oil suction would only begin once a positive pressure driving force had developed. The mechanistic model was based on measurable physical and thermal properties, and process parameters with no need of empirical data fitting, and can be used to study oil absorption in any deep-fat fried product that satisfies the assumptions made.
Resumo:
The mathematical models that describe the immersion-frying period and the post-frying cooling period of an infinite slab or an infinite cylinder were solved and tested. Results were successfully compared with those found in the literature or obtained experimentally, and were discussed in terms of the hypotheses and simplifications made. The models were used as the basis of a sensitivity analysis. Simulations showed that a decrease in slab thickness and core heat capacity resulted in faster crust development. On the other hand, an increase in oil temperature and boiling heat transfer coefficient between the oil and the surface of the food accelerated crust formation. The model for oil absorption during cooling was analysed using the tested post-frying cooling equation to determine the moment in which a positive pressure driving force, allowing oil suction within the pore, originated. It was found that as crust layer thickness, pore radius and ambient temperature decreased so did the time needed to start the absorption. On the other hand, as the effective convective heat transfer coefficient between the air and the surface of the slab increased the required cooling time decreased. In addition, it was found that the time needed to allow oil absorption during cooling was extremely sensitive to pore radius, indicating the importance of an accurate pore size determination in future studies.