137 resultados para distributed programming abstractions
em CentAUR: Central Archive University of Reading - UK
Resumo:
Body Sensor Networks (BSNs) have been recently introduced for the remote monitoring of human activities in a broad range of application domains, such as health care, emergency management, fitness and behaviour surveillance. BSNs can be deployed in a community of people and can generate large amounts of contextual data that require a scalable approach for storage, processing and analysis. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of data streams generated in BSNs. This paper proposes BodyCloud, a SaaS approach for community BSNs that supports the development and deployment of Cloud-assisted BSN applications. BodyCloud is a multi-tier application-level architecture that integrates a Cloud computing platform and BSN data streams middleware. BodyCloud provides programming abstractions that allow the rapid development of community BSN applications. This work describes the general architecture of the proposed approach and presents a case study for the real-time monitoring and analysis of cardiac data streams of many individuals.
Resumo:
Distributed multimedia supports a symbiotic infotainment duality, i.e. the ability to transfer information to the user, yet also provide the user with a level of satisfaction. As multimedia is ultimately produced for the education and / or enjoyment of viewers, the user’s-perspective concerning the presentation quality is surely of equal importance as objective Quality of Service (QoS) technical parameters, to defining distributed multimedia quality. In order to extensively measure the user-perspective of multimedia video quality, we introduce an extended model of distributed multimedia quality that segregates quality into three discrete levels: the network-level, the media-level and content-level, using two distinct quality perspectives: the user-perspective and the technical-perspective. Since experimental questionnaires do not provide continuous monitoring of user attention, eye tracking was used in our study in order to provide a better understanding of the role that the human element plays in the reception, analysis and synthesis of multimedia data. Results showed that video content adaptation, results in disparity in user video eye-paths when: i) no single / obvious point of focus exists; or ii) when the point of attention changes dramatically. Accordingly, appropriate technical- and user-perspective parameter adaptation is implemented, for all quality abstractions of our model, i.e. network-level (via simulated delay and jitter), media-level (via a technical- and user-perspective manipulated region-of-interest attentive display) and content-level (via display-type and video clip-type). Our work has shown that user perception of distributed multimedia quality cannot be achieved by means of purely technical-perspective QoS parameter adaptation.
Resumo:
In this paper, we develop an energy-efficient resource-allocation scheme with proportional fairness for downlink multiuser orthogonal frequency-division multiplexing (OFDM) systems with distributed antennas. Our aim is to maximize energy efficiency (EE) under the constraints of the overall transmit power of each remote access unit (RAU), proportional fairness data rates, and bit error rates (BERs). Because of the nonconvex nature of the optimization problem, obtaining the optimal solution is extremely computationally complex. Therefore, we develop a low-complexity suboptimal algorithm, which separates subcarrier allocation and power allocation. For the low-complexity algorithm, we first allocate subcarriers by assuming equal power distribution. Then, by exploiting the properties of fractional programming, we transform the nonconvex optimization problem in fractional form into an equivalent optimization problem in subtractive form, which includes a tractable solution. Next, an optimal energy-efficient power-allocation algorithm is developed to maximize EE while maintaining proportional fairness. Through computer simulation, we demonstrate the effectiveness of the proposed low-complexity algorithm and illustrate the fundamental trade off between energy and spectral-efficient transmission designs.
Resumo:
Pair Programming is a technique from the software development method eXtreme Programming (XP) whereby two programmers work closely together to develop a piece of software. A similar approach has been used to develop a set of Assessment Learning Objects (ALO). Three members of academic staff have developed a set of ALOs for a total of three different modules (two with overlapping content). In each case a pair programming approach was taken to the development of the ALO. In addition to demonstrating the efficiency of this approach in terms of staff time spent developing the ALOs, a statistical analysis of the outcomes for students who made use of the ALOs is used to demonstrate the effectiveness of the ALOs produced via this method.
Resumo:
Medical universities and teaching hospitals in Iraq are facing a lack of professional staff due to the ongoing violence that forces them to flee the country. The professionals are now distributed outside the country which reduces the chances for the staff and students to be physically in one place to continue the teaching and limits the efficiency of the consultations in hospitals. A survey was done among students and professional staff in Iraq to find the problems in the learning and clinical systems and how Information and Communication Technology could improve it. The survey has shown that 86% of the participants use the Internet as a learning resource and 25% for clinical purposes while less than 11% of them uses it for collaboration between different institutions. A web-based collaborative tool is proposed to improve the teaching and clinical system. The tool helps the users to collaborate remotely to increase the quality of the learning system as well as it can be used for remote medical consultation in hospitals.
Resumo:
GODIVA2 is a dynamic website that provides visual access to several terabytes of physically distributed, four-dimensional environmental data. It allows users to explore large datasets interactively without the need to install new software or download and understand complex data. Through the use of open international standards, GODIVA2 maintains a high level of interoperability with third-party systems, allowing diverse datasets to be mutually compared. Scientists can use the system to search for features in large datasets and to diagnose the output from numerical simulations and data processing algorithms. Data providers around Europe have adopted GODIVA2 as an INSPIRE-compliant dynamic quick-view system for providing visual access to their data.
Resumo:
In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiverinitiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed approach also allows for dynamic resource aggregation in a non dedicated computational environment. These features make it suitable for large-scale, multi-domain, heterogeneous environments, such as computational grids.
Resumo:
We present a general Multi-Agent System framework for distributed data mining based on a Peer-to-Peer model. Agent protocols are implemented through message-based asynchronous communication. The framework adopts a dynamic load balancing policy that is particularly suitable for irregular search algorithms. A modular design allows a separation of the general-purpose system protocols and software components from the specific data mining algorithm. The experimental evaluation has been carried out on a parallel frequent subgraph mining algorithm, which has shown good scalability performances.
Resumo:
Recently, two approaches have been introduced that distribute the molecular fragment mining problem. The first approach applies a master/worker topology, the second approach, a completely distributed peer-to-peer system, solves the scalability problem due to the bottleneck at the master node. However, in many real world scenarios the participating computing nodes cannot communicate directly due to administrative policies such as security restrictions. Thus, potential computing power is not accessible to accelerate the mining run. To solve this shortcoming, this work introduces a hierarchical topology of computing resources, which distributes the management over several levels and adapts to the natural structure of those multi-domain architectures. The most important aspect is the load balancing scheme, which has been designed and optimized for the hierarchical structure. The approach allows dynamic aggregation of heterogenous computing resources and is applied to wide area network scenarios.
Resumo:
This paper focuses on improving computer network management by the adoption of artificial intelligence techniques. A logical inference system has being devised to enable automated isolation, diagnosis, and even repair of network problems, thus enhancing the reliability, performance, and security of networks. We propose a distributed multi-agent architecture for network management, where a logical reasoner acts as an external managing entity capable of directing, coordinating, and stimulating actions in an active management architecture. The active networks technology represents the lower level layer which makes possible the deployment of code which implement teleo-reactive agents, distributed across the whole network. We adopt the Situation Calculus to define a network model and the Reactive Golog language to implement the logical reasoner. An active network management architecture is used by the reasoner to inject and execute operational tasks in the network. The integrated system collects the advantages coming from logical reasoning and network programmability, and provides a powerful system capable of performing high-level management tasks in order to deal with network fault.
Resumo:
In real world applications sequential algorithms of data mining and data exploration are often unsuitable for datasets with enormous size, high-dimensionality and complex data structure. Grid computing promises unprecedented opportunities for unlimited computing and storage resources. In this context there is the necessity to develop high performance distributed data mining algorithms. However, the computational complexity of the problem and the large amount of data to be explored often make the design of large scale applications particularly challenging. In this paper we present the first distributed formulation of a frequent subgraph mining algorithm for discriminative fragments of molecular compounds. Two distributed approaches have been developed and compared on the well known National Cancer Institute’s HIV-screening dataset. We present experimental results on a small-scale computing environment.