37 resultados para discrete-continuous systems
em CentAUR: Central Archive University of Reading - UK
Resumo:
A neural network enhanced self-tuning controller is presented, which combines the attributes of neural network mapping with a generalised minimum variance self-tuning control (STC) strategy. In this way the controller can deal with nonlinear plants, which exhibit features such as uncertainties, nonminimum phase behaviour, coupling effects and may have unmodelled dynamics, and whose nonlinearities are assumed to be globally bounded. The unknown nonlinear plants to be controlled are approximated by an equivalent model composed of a simple linear submodel plus a nonlinear submodel. A generalised recursive least squares algorithm is used to identify the linear submodel and a layered neural network is used to detect the unknown nonlinear submodel in which the weights are updated based on the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model therefore the nonlinear submodel is naturally accommodated within the control law. Two simulation studies are provided to demonstrate the effectiveness of the control algorithm.
Resumo:
The Routh-stability method is employed to reduce the order of discrete-time system transfer functions. It is shown that the Routh approximant is well suited to reduce both the denominator and the numerator polynomials, although alternative methods, such as PadÃ�Â(c)-Markov approximation, are also used to fit the model numerator coefficients.
Resumo:
Boolean input systems are in common used in the electric industry. Power supplies include such systems and the power converter represents these. For instance, in power electronics, the control variable are the switching ON and OFF of components as thyristors or transistors. The purpose of this paper is to use neural network (NN) to control continuous systems with Boolean inputs. This method is based on classification of system variations associated with input configurations. The classical supervised backpropagation algorithm is used to train the networks. The training of the artificial neural network and the control of Boolean input systems are presented. The design procedure of control systems is implemented on a nonlinear system. We apply those results to control an electrical system composed of an induction machine and its power converter.
Resumo:
The purpose of this paper is to design a control law for continuous systems with Boolean inputs allowing the output to track a desired trajectory. Such systems are controlled by items of commutation. This type of systems, with Boolean inputs, has found increasing use in the electric industry. Power supplies include such systems and a power converter represents one of theses systems. For instance, in power electronics the control variable is the switching OFF and ON of components such as thyristors or transistors. In this paper, a method is proposed for the designing of a control law in state space for such systems. This approach is implemented in simulation for the control of an electronic circuit.
Resumo:
In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems. In this setting, recent works have shown how to get a statistics of extremes in agreement with the classical Extreme Value Theory. We pursue these investigations by giving analytical expressions of Extreme Value distribution parameters for maps that have an absolutely continuous invariant measure. We compare these analytical results with numerical experiments in which we study the convergence to limiting distributions using the so called block-maxima approach, pointing out in which cases we obtain robust estimation of parameters. In regular maps for which mixing properties do not hold, we show that the fitting procedure to the classical Extreme Value Distribution fails, as expected. However, we obtain an empirical distribution that can be explained starting from a different observable function for which Nicolis et al. (Phys. Rev. Lett. 97(21): 210602, 2006) have found analytical results.
Resumo:
In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems that have a singular measure. Using the block maxima approach described in Faranda et al. [2011] we show that, numerically, the Extreme Value distribution for these maps can be associated to the Generalised Extreme Value family where the parameters scale with the information dimension. The numerical analysis are performed on a few low dimensional maps. For the middle third Cantor set and the Sierpinskij triangle obtained using Iterated Function Systems, experimental parameters show a very good agreement with the theoretical values. For strange attractors like Lozi and H\`enon maps a slower convergence to the Generalised Extreme Value distribution is observed. Even in presence of large statistics the observed convergence is slower if compared with the maps which have an absolute continuous invariant measure. Nevertheless and within the uncertainty computed range, the results are in good agreement with the theoretical estimates.
Resumo:
This paper derives exact discrete time representations for data generated by a continuous time autoregressive moving average (ARMA) system with mixed stock and flow data. The representations for systems comprised entirely of stocks or of flows are also given. In each case the discrete time representations are shown to be of ARMA form, the orders depending on those of the continuous time system. Three examples and applications are also provided, two of which concern the stationary ARMA(2, 1) model with stock variables (with applications to sunspot data and a short-term interest rate) and one concerning the nonstationary ARMA(2, 1) model with a flow variable (with an application to U.S. nondurable consumers’ expenditure). In all three examples the presence of an MA(1) component in the continuous time system has a dramatic impact on eradicating unaccounted-for serial correlation that is present in the discrete time version of the ARMA(2, 0) specification, even though the form of the discrete time model is ARMA(2, 1) for both models.
Resumo:
Studies of construction labour productivity have revealed that limited predictability and multi-agent social complexity make long-range planning of construction projects extremely inaccurate. Fire-fighting, a cultural feature of construction project management, social and structural diversity of involved permanent organizations, and structural temporality all contribute towards relational failures and frequent changes. The main purpose of this paper is therefore to demonstrate that appropriate construction planning may have a profound synergistic effect on structural integration of a project organization. Using the general systems theory perspective it is further a specific objective to investigate and evaluate organizational effects of changes in planning and potentials for achieving continuous project-organizational synergy. The newly developed methodology recognises that planning should also represent a continuous, improvement-leading driving force throughout a project. The synergistic effect of the process planning membership duality fostered project-wide integration, eliminated internal boundaries, and created a pool of constantly upgrading knowledge. It maintained a creative environment that resulted in a number of process-related improvements from all parts of the organization. As a result labour productivity has seen increases of more than 30%, profits have risen from an average of 12% to more than 18%, and project durations have been reduced by several days.
Resumo:
The usefulness of motor subtypes of delirium is unclear due to inconsistency in subtyping methods and a lack of validation with objective measures of activity. The activity of 40 patients was measured over 24 h with a discrete accelerometer-based activity monitor. The continuous wavelet transform (CWT) with various mother wavelets were applied to accelerometry data from three randomly selected patients with DSM-IV delirium that were readily divided into hyperactive, hypoactive, and mixed motor subtypes. A classification tree used the periods of overall movement as measured by the discrete accelerometer-based monitor as determining factors for which to classify these delirious patients. This data used to create the classification tree were based upon the minimum, maximum, standard deviation, and number of coefficient values, generated over a range of scales by the CWT. The classification tree was subsequently used to define the remaining motoric subtypes. The use of a classification system shows how delirium subtypes can be categorized in relation to overall motoric behavior. The classification system was also implemented to successfully define other patient motoric subtypes. Motor subtypes of delirium defined by observed ward behavior differ in electronically measured activity levels.
Resumo:
A technique is derived for solving a non-linear optimal control problem by iterating on a sequence of simplified problems in linear quadratic form. The technique is designed to achieve the correct solution of the original non-linear optimal control problem in spite of these simplifications. A mixed approach with a discrete performance index and continuous state variable system description is used as the basis of the design, and it is shown how the global problem can be decomposed into local sub-system problems and a co-ordinator within a hierarchical framework. An analysis of the optimality and convergence properties of the algorithm is presented and the effectiveness of the technique is demonstrated using a simulation example with a non-separable performance index.
Resumo:
An algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimization and Parameter Estimation (DISOPE), which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimization procedure. A version of the algorithm with a linear-quadratic model-based problem, implemented in the C+ + programming language, is developed and applied to illustrative simulation examples. An analysis of the optimality and convergence properties of the algorithm is also presented.
Resumo:
This work provides a framework for the approximation of a dynamic system of the form x˙=f(x)+g(x)u by dynamic recurrent neural network. This extends previous work in which approximate realisation of autonomous dynamic systems was proven. Given certain conditions, the first p output neural units of a dynamic n-dimensional neural model approximate at a desired proximity a p-dimensional dynamic system with n>p. The neural architecture studied is then successfully implemented in a nonlinear multivariable system identification case study.