34 resultados para dihydroxyborinium ions
em CentAUR: Central Archive University of Reading - UK
Resumo:
Incorporation of radioactive isotopes during the formation of barite mineral scale is a widespread phenomenon occurring within the oil, mining and process industries. In a series of experiments radioactive barite/celestite solid solutions (SSBarite-Celcstite) have been synthesized under controlled conditions by the counter diffusion of Ra-226, Ba2+, Sr24+ and SO42- ions through a porous medium (silica gel), to investigate inhibiting effects in Ra uptake associated with the introduction of a competing ion (Sr2+). From characterization studies, the particle size and the morphology of the crystals appear to be related to the initial [Sr]/[Ba] molar ratio of the starting solution. Typically, systems richer in Sr produce smaller sized crystals and clusters characterized by a lower degree of order. The activity introduced to the system is mainly incorporated in the crystals generated from the barite/celestite solid solution as suggested by the activity profiles of the hydrogel columns analysed by gamma-spectrometry. There is a relationship between the initial [Sr]/[Ba] molar ratio of the starting solution and the activity exhibited by the synthesized crystals. An effective inhibition of the Ra-226 uptake during formation of the crystals (SSBarite-Celestite) was obtained through the introduction of a competing ion (Sr2+): the higher the initial [Sr]/[Ba] molar ratio of the starting solution, the lower the intensity of the activity peak in the crystals. (C) 2003 Published by Elsevier Ltd.
Resumo:
It is demonstrated that monodisperse magnetic FePt nanoparticle can be engineered into a protective dense silica layer, followed by concentric outer mesoporous silica layers with tailored -SH, -SO3H and -NH2 surface groups, these new materials can be used to capture heavy metal ions and DNA molecules from solution specifically by their internal or/and external functionalised surfaces by magnetic means.
Resumo:
Oxidised low density lipoprotein (LDL) may be involved in the pathogenesis of atherosclerosis. We have therefore investigated the mechanisms underlying the antioxidant/pro-oxidant behavior of dehydroascorbate, the oxidation product of ascorbic acid, toward LDL incubated With Cu2+ ions. By monitoring lipid peroxidation through the formation of conjugated dienes and lipid hydroperoxides, we show that the pro-oxidant activity of dehydroascorbate is critically dependent on the presence of lipid hydroperoxides, which accumulate during the early stages of oxidation. Using electron paramagnetic resonance spectroscopy, we show that dehydroascorbate amplifies the generation of alkoxyl radicals during the interaction of copper ions with the model alkyl hydroperoxide, tert-butylhydroperoxide. Under continuous-flow conditions, a prominent doublet signal was detected, which we attribute to both the erythroascorbate and ascorbate free radicals. On this basis, we propose that the pro-oxidant activity of dehydroascorbate toward LDL is due to its known spontaneous interconversion to erythroascorbate and ascorbate, which reduce Cu2+ to Cu+ and thereby promote the decomposition of lipid hydroperoxides. Various mechanisms, including copper chelation and Cu+ oxidation, are suggested to underlie the antioxidant behavior of dehydroascorbate in LDL that is essentially free of lipid hydroperoxides. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The compound bis[1,1'-N,N'-(2-picolyl) aminomethyl] ferrocene, L-1, was synthesized. The protonation constants of this ligand and the stability constants of its complexes with Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ were determined in aqueous solution by potentiometric methods at 25degreesC and at ionic strength 0.10 mol dm(-3) in KNO3. The compound L-1 forms only 1:1 (M:L) complexes with Pb2+ and Cd2+ while with Ni2+ and Cu2+ species of 2:1 ratio were also found. The complexing behaviour of L-1 is regulated by the constraint imposed by the ferrocene in its backbone, leading to lower values of stability constants for complexes of the divalent first row transition metals when compared with related ligands. However, the differences in stability are smaller for the larger metal ions. The structure of the copper complex with L-1 was determined by single-crystal X-ray diffraction and shows that a species of 2:2 ratio is formed. The two copper centres display distorted octahedral geometries and are linked through the two L1 bridges at a long distance of 8.781(10) Angstrom. The electrochemical behaviour of L-1 was studied in the presence of Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+, showing that upon complexation the ferrocene-ferrocenium half-wave potential shifts anodically in relation to that of the free ligand. The maximum electrochemical shift (DeltaE(1/2)) of 268 mV was found in the presence of Pb2+, followed by Cu2+ (218 mV), Ni2+ (152 mV), Zn2+ (111 mV) and Cd2+ (110 mV). Moreover, L-1 is able to electrochemically and selectively sense Cu2+ in the presence of a large excess of the other transition metal cations studied.
Resumo:
Molecular modelling studies have been carried out on two bis(calix[4]diqu(inone) ionophores, each created from two (calix[4]diquinone)arenes bridged at their bottom rims via alkyl chains (CH2)(n), 1: n = 3, 2; n = 4, in order to understand the reported selectivity of these ligands towards different sized metal ions such as Na+, K+, Rb+, and Cs+ in dmso solution. Conformational. analyses have been carried out which show that in the lowest energy conformations of the two macrocycles, the individual calix[4]diquinones exhibit a combination of partial cone, 1,3-alternate and cone conformations. The interactions of these alkali metals with the macrocycles have been studied in the gas phase and in a periodic box of solvent dmso by molecular mechanics and molecular dynamics calculations. Molecular mechanics calculations have been carried out on the mode of entry of the ions into the macrocycles and suggest that this is likely to occur from the side of the central cavity, rather than through the main axis of the calix[4]diquinones. There are energy barriers of ca. 19 kcal mol(-1) for this entry path in the gas phase, but in solution no energy barrier is found. Molecular dynamics simulations show that in both 1 and 2, though particularly in the latter macrocycle, one or two solvent molecules are bonded to the metal throughout the course of the simulation, often to the exclusion, of one or more of the ether oxygen atoms. By contrast the carbonyl oxygen atoms remain bonded to the metal atoms throughout with bond lengths that remain significantly less than those to the ether oxygen atoms. Free energy perturbation studies have been carried out in dmso and indicate that for 1, the selectivity follows the order Rb+ approximate to K+ > Cs+ >> Na+, which is partially in agreement with the experimental results. The energy differences are small and indeed the ratio between stability constants found for Cs+ and K+ complexes is only 0.60, showing that 1 has only a slight preference for K+. For the larger receptor 2, which is better suited to metal complexation, the binding affinity follows the pattern Cs+ >> Rb+ >> K+ >> Na+, with energy differences of 5.75, 2.61, 2.78 kcal mol(-1) which is perfectly consistent with experimental results.
Resumo:
It is demonstrated that monodisperse magnetic FePt nanoparticle can be engineered into a protective dense silica layer, followed by concentric outer mesoporous silica layers with tailored -SH, -SO3H and -NH2 surface groups, these new materials can be used to capture heavy metal ions and DNA molecules from solution specifically by their internal or/and external functionalised surfaces by magnetic means.
Resumo:
The ferric complexing capacity of four phenolic compounds, occurring in olives and virgin olive oil, namely, oleuropein, hydroxytyrosol, 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA), and 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-DHPEA-EDA), and their stability in the presence of ferric ions were studied. At pH 3.5, all compounds formed a reversible 1:1 complex with ferric ions, but hydroxytyrosol could also form complexes containing > 1 ferric ion per phenol molecule. At pH 5.5, the complexes between ferric ions and 3,4-DHPEA-EA or 3,4-DHPEA-EDA were relatively stable, indicating that the antioxidant activity of 3,4-DHPEA-EA or 3,4-DHPEA-EDA at pH 5.5 is partly due to their metal-chelating activity. At pH 7.4, a complex containing > 1 ferric ion per phenol molecule was formed with hydroxytyrosol. Oleuropein, 3,4-DHPEA-EA, and 3,4-DHPEA-EDA also formed insoluble complexes at this pH. There was no evidence for chelation of Fe(II) by hydroxytyrosol or its derivatives. At all pH values tested, hydroxytyrosol was the most stable compound in the absence of Fe(III) but the most sensitive to the presence of Fe(III).
Resumo:
The new ligand 6,6 ''-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)2,2':6 ',2 ''-terpyridine (CyMe4-BTTP) has been synthesized in 4 steps from 2,2':6',2 ''-terpyridine. Detailed NMR and mass spectrometry studies indicate that the ligand forms 1 : 2 complexes with lanthanide(III) perchlorates where the aliphatic rings are conformationally constrained whereas 1 : 1 complexes are formed with lanthanide(III) nitrates where the rings are conformationally mobile. An optimized structure of the 1 : 2 solution complex with Yb(III) was obtained from the relative magnitude of the induced paramagnetic shifts. X-Ray crystallographic structures of the ligand and of its 1 : 1 complex with Y(III) were also obtained. The NMR and mass spectra of [Pd(CyMe4-BTTP)](n)(2n+) are consistent with a dinuclear double helical structure (n = 2). In the absence of a phase-modifier, CyMe4-BTTP in n-octanol showed a maximum distribution coefficient of Am(III) of 0.039 (+/-20%) and a maximum separation factor of Am(III) over Eu(III) of 12.0 from nitric acid. The metal(III) cations are extracted as the 1 : 1 complex from nitric acid. The generally low distribution coefficients observed compared with the BTBPs arise because the 1 : 1 complex of CyMe4-BTTP is considerably less hydrophobic than the 1 : 2 complexes formed by the BTBPs. In M(BTTP)(3+) complexes, there is a competition between the nitrate ions and the ligand for the complexation of the metal.
Resumo:
Two complex heterometallic salts with formulae Tl-6[Fe(CN)(6)](1) (33)(NO3)(OH) (1) and [Co(bpy)(2)(CN)(2)](2){[Ag(CN)(2)](0) (5)[Fe(CN)(6)](0) (5)} 8H(2)O (2) have been synthesized and fully characterized Single crystal X-ray analyses reveal that compound 1 is comprised of discrete Tl+ cations and [Fe(CN)(6)](3-) anions together with OH- and NO3- anions Compound 2 contains [Co(bpy)(2)(CN)(2)](+) cations and {[Ag(CN)(2)][Fe(CN)(6)]}(-) anions together with eight molecules of water of crystallization Both structures form unprecedented three-dimensional supramolecular networks via non covalent interactions Another important observation is that the stereochemically active inert (lone) pair present on Tl+ plays little role in controlling the structure of 1 The water molecules in 2 play important roles in providing stability organizing a supramolecular network through hydrogen bonding In the syntheses of 1 and 2 Fe(II) is oxidized to Fe(III) and Co(II) to Co(III) respectively facilitating the formation of the salts that are obtained Both compounds exhibit photoluminescence emission in solution near the visible region.