13 resultados para digital phase-locked loops
em CentAUR: Central Archive University of Reading - UK
Resumo:
Under multipath conditions, standard Video Intermediate Frequency (VIF) detectors generate a local oscillator phase error and consequently produce a dispersed non-ideal detected video signal due to the presence of additional IF carriers. The dispersed video causes problems when attempting to identify and remove the multipath interference, or ghosts, by the use of Digital Signal Processing and digital filtering. A digital phase lock system is presented which derives the correct phase for synchronous detection in the presence of multipath by using correlation information that has already been calculated as part of the deghosting process. As a result, the video deghoster system is made simpler, faster and more economical.
Resumo:
The aim of this three year project funded by the Countryside Council for Wales (CCW) is to develop techniques firstly, to refine and update existing targets for habitat restoration and re-creation at the landscape scale and secondly, to develop a GIS-based model for the implementation of those targets at the local scale. Landscape Character Assessment (LCA) is being used to map Landscape Types across the whole of Wales as the first stage towards setting strategic habitat targets. The GIS habitat model uses data from the digital Phase I Habitat Survey for Wales to determine the suitability of individual sites for restoration to specific habitat types, including broadleaf woodland. The long-term aim is to develop a system that strengthens the character of Welsh landscapes and provides real biodiversity benefits based upon realistic targets given limited resources for habitat restoration and re-creation.
Resumo:
During a period of heliospheric disturbance in 2007-9 associated with a co-rotating interaction region (CIR), a characteristic periodic variation becomes apparent in neutron monitor data. This variation is phase locked to periodic heliospheric current sheet crossings. Phase-locked electrical variations are also seen in the terrestrial lower atmosphere in the southern UK, including an increase in the vertical conduction current density of fair weather atmospheric electricity during increases in the neutron monitor count rate and energetic proton count rates measured by spacecraft. At the same time as the conduction current increases, changes in the cloud microphysical properties lead to an increase in the detected height of the cloud base at Lerwick Observatory, Shetland, with associated changes in surface meteorological quantities. As electrification is expected at the base of layer clouds, which can influence droplet properties, these observations of phase-locked thermodynamic, cloud, atmospheric electricity and solar sector changes are not inconsistent with a heliospheric disturbance driving lower troposphere changes.
Resumo:
A weak instability mode, associated with phase-locked counterpropagating coastal Kelvin waves in horizontal anticyclonic shear, is found in the semigeostrophic (SG) equations for stratified flow in a channel. This SG instability mode approximates a similar mode found in the Euler equations in the limit in which particle-trajectory slopes are much smaller than f/N, where f is the Coriolis frequency and N > f the buoyancy frequency. Though weak under normal parameter conditions, this instability mode is of theoretical interest because its existence accounts for the failure of an Arnol’d-type stability theorem for the SG equations. In the opposite limit, in which the particle motion is purely vertical, the Euler equations allow only buoyancy oscillations with no horizontal coupling. The SG equations, on the other hand, allow a physically spurious coastal “mirage wave,” so called because its velocity field vanishes despite a nonvanishing disturbance pressure field. Counterpropagating pairs of these waves can phase-lock to form a spurious “mirage-wave instability.” Closer examination shows that the mirage wave arises from failure of the SG approximations to be self-consistent for trajectory slopes f/N.
Resumo:
The distributions of times to first cell division were determined for populations of Escherichia coli stationary-phase cells inoculated onto agar media. This was accomplished by using automated analysis of digital images of individual cells growing on agar and calculation of the "box area ratio." Using approximately 300 cells per experiment, the mean time to first division and standard deviation for cells grown in liquid medium at 37 degrees C and inoculated on agar and incubated at 20 degrees C were determined as 3.0 h and 0.7 h, respectively. Distributions were observed to tail toward the higher values, but no definitive model distribution was identified. Both preinoculation stress by heating cultures at 50 degrees C and postinoculation stress by growth in the presence of higher concentrations of NaCl increased mean times to first division. Both stresses also resulted in an increase in the spread of the distributions that was proportional to the mean division time, the coefficient of variation being constant at approximately 0.2 in all cases. The "relative division time," which is the time to first division for individual cells expressed in terms of the cell size doubling time, was used as measure of the "work to be done" to prepare for cell division. Relative division times were greater for heat-stressed cells than for those growing under osmotic stress.
Resumo:
We argue the case for a new branch of mathematics and its applications: Mathematics for the Digital Society. There is a challenge for mathematics, a strong “pull” from new and emerging commercial and public activities; and a need to train and inspire a generation of quantitative scientists who will seek careers within the associated sectors. Although now going through an early phase of boiling up, prior to scholarly distillation, we discuss how data rich activities and applications may benefit from a wide range of continuous and discrete models, methods, analysis and inference. In ten years time such applications will be common place and associated courses may be embedded within the undergraduate curriculum.
Resumo:
In 1997, the UK implemented the worlds first commercial digital terrestrial television system. Under the ETS 300 744 standard, the chosen modulation method, COFDM, is assumed to be multipath resilient. Previous work has shown that this is not necessarily the case. It has been shown that the local oscillator required for demodulation from intermediate-frequency to baseband must be very accurate. This paper shows that under multipath conditions, standard methods for obtaining local oscillator phase lock may not be adequate. This paper demonstrates a set of algorithms designed for use with a simple local oscillator circuit which will allow correction for local oscillator phase offset to maintain a low bit error rate with multipath present.
Resumo:
In this paper a new nonlinear digital baseband predistorter design is introduced based on direct learning, together with a new Wiener system modeling approach for the high power amplifiers (HPA) based on the B-spline neural network. The contribution is twofold. Firstly, by assuming that the nonlinearity in the HPA is mainly dependent on the input signal amplitude the complex valued nonlinear static function is represented by two real valued B-spline neural networks, one for the amplitude distortion and another for the phase shift. The Gauss-Newton algorithm is applied for the parameter estimation, in which the De Boor recursion is employed to calculate both the B-spline curve and the first order derivatives. Secondly, we derive the predistorter algorithm calculating the inverse of the complex valued nonlinear static function according to B-spline neural network based Wiener models. The inverse of the amplitude and phase shift distortion are then computed and compensated using the identified phase shift model. Numerical examples have been employed to demonstrate the efficacy of the proposed approaches.
Resumo:
As digital technologies become widely used in designing buildings and infrastructure, questions arise about their impacts on construction safety. This review explores relationships between construction safety and digital design practices with the aim of fostering and directing further research. It surveys state-of-the-art research on databases, virtual reality, geographic information systems, 4D CAD, building information modeling and sensing technologies, finding various digital tools for addressing safety issues in the construction phase, but few tools to support design for construction safety. It also considers a literature on safety critical, digital and design practices that raises a general concern about ‘mindlessness’ in the use of technologies, and has implications for the emerging research agenda around construction safety and digital design. Bringing these strands of literature together suggests new kinds of interventions, such as the development of tools and processes for using digital models to promote mindfulness through multi-party collaboration on safety
Resumo:
Microcontroller-based peak current mode control of a buck converter is investigated. The new solution uses a discrete time controller with digital slope compensation. This is implemented using only a single-chip microcontroller to achieve desirable cycle-by-cycle peak current limiting. The digital controller is implemented as a two-pole, two-zero linear difference equation designed using a continuous time model of the buck converter and a discrete time transform. Subharmonic oscillations are removed with digital slope compensation using a discrete staircase ramp. A 16 W hardware implementation directly compares analog and digital control. Frequency response measurements are taken and it is shown that the crossover frequency and expected phase margin of the digital control system match that of its analog counterpart.
Resumo:
This work proposes a method to objectively determine the most suitable analogue redesign method for forward type converters under digital voltage mode control. Particular emphasis is placed on determining the method which allows the highest phase margin at the particular switching and crossover frequencies chosen by the designer. It is shown that at high crossover frequencies with respect to switching frequency, controllers designed using backward integration have the largest phase margin; whereas at low crossover frequencies with respect to switching frequency, controllers designed using bilinear integration have the largest phase margins. An accurate model of the power stage is used for simulation, and experimental results from a Buck converter are collected. The performance of the digital controllers is compared to that of the equivalent analogue controller both in simulation and experiment. Excellent correlation between the simulation and experimental results is presented. This work will allow designers to confidently choose the analogue redesign method which yields the greater phase margin for their application.
Resumo:
In this study, dual-hop channel state information-assisted amplify-and-forward (AF) cooperative systems in the presence of in-phase and quadrature-phase (I/Q) imbalance, which refers to the mismatch between components in the I and Q branches, are investigated. First, the authors analyse the performance of the considered AF cooperative protocol without compensation for the I/Q imbalance as the benchmark. Then, a compensation algorithm for the I/Q imbalance is proposed, which makes use of the received signals at the destination, from the source and the relay nodes, together with their conjugations to detect the transmitted signal. Moreover, the authors study the considered AF cooperative system implemented with the opportunistic relay selection and the proposed compensation mechanism for the I/Q imbalance. The performance of the AF cooperative system under study is evaluated in terms of average symbol error probability, which is derived by considering transmission in a Rayleigh fading environment. Numerical results are provided and show that the proposed compensation algorithm can efficiently mitigate the effect of the I/Q imbalance. On the other hand, it is observed that the AF cooperative system with opportunistic relay selection acquires a performance gain beyond that without relay selection.
Resumo:
This article proposes a systematic approach to determine the most suitable analogue redesign method to be used for forward-type converters under digital voltage mode control. The focus of the method is to achieve the highest phase margin at the particular switching and crossover frequencies chosen by the designer. It is shown that at high crossover frequencies with respect to switching frequency, controllers designed using backward integration have the largest phase margin; whereas at low crossover frequencies with respect to switching frequency, controllers designed using bilinear integration with pre-warping have the largest phase margins. An algorithm has been developed to determine the frequency of the crossing point where the recommended discretisation method changes. An accurate model of the power stage is used for simulation and experimental results from a Buck converter are collected. The performance of the digital controllers is compared to that of the equivalent analogue controller both in simulation and experiment. Excellent closeness between the simulation and experimental results is presented. This work provides a concrete example to allow academics and engineers to systematically choose a discretisation method.