3 resultados para diffuse light
em CentAUR: Central Archive University of Reading - UK
Resumo:
The role of different sky conditions on diffuse PAR fraction (ϕ), air temperature (Ta), vapor pressure deficit (vpd) and GPP in a deciduous forest is investigated using eddy covariance observations of CO2 fluxes and radiometer and ceilometer observations of sky and PAR conditions on hourly and growing season timescales. Maximum GPP response occurred under moderate to high PAR and ϕ and low vpd. Light response models using a rectangular hyperbola showed a positive linear relation between ϕ and effective quantum efficiency (α = 0.023ϕ + 0.012, r2 = 0.994). Since PAR and ϕ are negatively correlated, there is a tradeoff between the greater use efficiency of diffuse light and lower vpd and the associated decrease in total PAR available for photosynthesis. To a lesser extent, light response was also modified by vpd and Ta. The net effect of these and their relation with sky conditions helped enhance light response under sky conditions that produced higher ϕ. Six sky conditions were classified from cloud frequency and ϕ data: optically thick clouds, optically thin clouds, mixed sky (partial clouds within hour), high, medium and low optical aerosol. The frequency and light responses of each sky condition for the growing season were used to predict the role of changing sky conditions on annual GPP. The net effect of increasing frequency of thick clouds is to decrease GPP, changing low aerosol conditions has negligible effect. Increases in the other sky conditions all lead to gains in GPP. Sky conditions that enhance intermediate levels of ϕ, such as thin or scattered clouds or higher aerosol concentrations from volcanic eruptions or anthropogenic emissions, will have a positive outcome on annual GPP, while an increase in cloud cover will have a negative impact. Due to the ϕ/PAR tradeoff and since GPP response to changes in individual sky conditions differ in sign and magnitude, the net response of ecosystem GPP to future sky conditions is non-linear and tends toward moderation of change.
Resumo:
Many atmospheric constituents besides carbon dioxide (CO2) contribute to global warming, and it is common to compare their influence on climate in terms of radiative forcing, which measures their impact on the planetary energy budget. A number of recent studies have shown that many radiatively active constituents also have important impacts on the physiological functioning of ecosystems, and thus the ‘ecosystem services’ that humankind relies upon. CO2 increases have most probably increased river runoff and had generally positive impacts on plant growth where nutrients are non-limiting, whereas increases in near-surface ozone (O3) are very detrimental to plant productivity. Atmospheric aerosols increase the fraction of surface diffuse light, which is beneficial for plant growth. To illustrate these differences, we present the impact on net primary productivity and runoff of higher CO2, higher near-surface O3, and lower sulphate aerosols, and for equivalent changes in radiative forcing.We compare this with the impact of climate change alone, arising, for example, from a physiologically inactive gas such as methane (CH4). For equivalent levels of change in radiative forcing, we show that the combined climate and physiological impacts of these individual agents vary markedly and in some cases actually differ in sign. This study highlights the need to develop more informative metrics of the impact of changing atmospheric constituents that go beyond simple radiative forcing.
Resumo:
This paper proposes a new reconstruction method for diffuse optical tomography using reduced-order models of light transport in tissue. The models, which directly map optical tissue parameters to optical flux measurements at the detector locations, are derived based on data generated by numerical simulation of a reference model. The reconstruction algorithm based on the reduced-order models is a few orders of magnitude faster than the one based on a finite element approximation on a fine mesh incorporating a priori anatomical information acquired by magnetic resonance imaging. We demonstrate the accuracy and speed of the approach using a phantom experiment and through numerical simulation of brain activation in a rat's head. The applicability of the approach for real-time monitoring of brain hemodynamics is demonstrated through a hypercapnic experiment. We show that our results agree with the expected physiological changes and with results of a similar experimental study. However, by using our approach, a three-dimensional tomographic reconstruction can be performed in ∼3 s per time point instead of the 1 to 2 h it takes when using the conventional finite element modeling approach