11 resultados para diethyl pyrocarbonate
em CentAUR: Central Archive University of Reading - UK
Resumo:
The synthesis of the first example of a new class of tetradentate reagents for the efficient separation of americium(Ill) and europium(111) is reported together with the structure of the complex formed with europium(III), (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Novel non-toxic poly(ethylene glycol)-supported 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) moieties are demonstrated to give an excellent interfacial catalysis for the selective oxidation of alcohols to the corresponding carbonyl species in biphasic media and investigation for the recovery of these new macromolecular catalysts via precipitation with diethyl ether after catalysis has also been briefly studied.
Resumo:
Nitroxyl radicals such as 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) are highly selective oxidation catalysts for the conversion of primary alcohols into the corresponding aldehydes. In this study, direct tethering of TEMPO units onto linear poly(ethylene glycol) (PEG) has afforded macromolecular catalysts that exhibit solubility in both aqueous and organic solvents. Recovery of the dissolved polymer-supported catalyst has been carried out by precipitation with a suitable solvent such as diethyl ether. The high catalyst activities and selectivities associated traditionally with nitroxyl-mediated oxidations of alcohols are retained by the series of "linker-less" linear PEG-TEMPO catalysts in which the TEMPO moiety is coupled directly to the PEG support. Although the selectivity remains unaltered, upon recycling of the linker-less polymer-supported catalysts, extended reaction times are required to maintain high yields of the desired carbonyl compounds. Alternatively, attachment of two nitroxyl radicals onto each functionalized PEG chain terminus via a 5-hydroxyisophthalic acid linker affords branched polymer-supported catalysts. In stark contrast to the linker-less catalysts, these branched nitroxyls exhibit catalytic activities up to five times greater than 4-methoxy-TEMPO alone under similar conditions. In addition, minimal decrease in catalytic activity is observed upon recycling of these branched macromolecular catalysts via solvent-induced precipitation. The high catalytic activities and preservation of activity upon recycling of these branched systems is attributed to enhanced regeneration of the nitroxyl species as a result of intramolecular syn-proportionation.
Resumo:
Acrylamide levels in cooked/processed food can be reduced by treatment with citric acid or glycine. In a potato model system cooked at 180 degrees C for 10-60 min, these treatments affected the volatile profiles. Strecker aldehydes and alkylpyrazines, key flavor compounds of cooked potato, were monitored. Citric acid limited the generation of volatiles, particularly the alkylpyrazines. Glycine increased the total volatile yield by promoting the formation of certain alkylpyrazines, namely, 2,3-dimethylpyrazine, trimethylpyrazine, 2-ethyl-3,5-dimethylpyrazine, tetramethylpyrazine, and 2,5-diethyl-3- methylpyrazine. However, the formation of other pyrazines and Strecker aldehydes was suppressed. It was proposed that the opposing effects of these treatments on total volatile yield may be used to best advantage by employing a combined treatment at lower concentrations, especially as both treatments were found to have an additive effect in reducing acrylamide. This would minimize the impact on flavor but still achieve the desired reduction in acrylamide levels.
Resumo:
The 1:1 condensation of N-methyl-1,3-diaminopropane and N,N-diethyl-1,2-diminoethane with 2-acetylpyridine, respectively at high dilution gives the tridentate mono-condensed Schiff bases N-methyl-N'-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L-1) and N,N-diethyl-N'-(1-pyridin-2-yl-ethylidene)-ethane-1,2-diamine (L-2). The tridentate ligands were allowed to react with methanol solutions of nickel(II) thiocyanate to prepare the complexes [Ni(L-1)(SCN)(2)(OH2) (1) and [{Ni(L-2)(SCN)}(2)] (2). Single crystal X-ray diffraction was used to confirm the structures of the complexes. The nickel(II) in complex 1 is bonded to three nitrogen donor atoms of the ligand L-1 in a mer orientation, together with two thiocyanates bonded through nitrogen and a water molecule, and it is the first Schiff base complex of nickel(II) containing both thiocyanate and coordinated water. The coordinated water initiates a hydrogen bonded 2D network. In complex 2, the nickel ion occupies a slightly distorted octahedral coordination sphere, being bonded to three nitrogen atoms from the ligand L-2, also in a mer orientation, and two thiocyanate anions through nitrogen. In contrast to 1, the sixth coordination site is occupied by a sulfur atom from a thiocyanate anion in an adjacent molecule, thus creating a centrosymmetric dimer. A variable temperature magnetic study of complex 2 indicates the simultaneous presence of zero-field splitting, weak intramolecular ferromagnetic coupling and intermolecular antiferromagnetic interactions between the nickel(II) centers.
Resumo:
The species [{Sn(C2H2iPr3-2,4,6)2}3] has been obtained in a simple, essentially quantitative, synthesis from SnCl2 and ArLi in diethyl ether at low temperature. The crystal structure analysis confirms the trimeric nature of the molecular units but reveals some unusual features. The crystal contains the unusual feature of an asymmetric unit that consists of three units of [{SnAr2}3] in P21/c; the molecular unit is a scalene triangle, showing high consistency between the three molecules, in contrast to analogous trimeric species of silicon or germanium. The SnSn bonds are lengthened (average value 2.942 Å) owing to steric crowding.
Resumo:
Metallation of ArBr (Ar = 2,6-diethylphenyl) with Li powder in diethyl ether, followed by addition of stannous chloride at low temperature does not give the expected oligomeric diarylstannane but an essentially quantitative yield of the novel tetrastannabutane [{SnAr2}3SnArBr]. Some reactions of the new species are reported.
Resumo:
Reaction of tin(II) chloride with Li(CPhCPh2) at –78 °C in diethyl ether–hexane–tetrahydrofuran affords a deep red solution whose colour fades on warming, and which we believe contains the (unstable) first dialkenyltin(II) species. The latter survives long enough at low temperatures to undergo intermolecular oxidative addition, and one such adduct leads ultimately to the formation of Sn(CPhCPh2)3Bun, which has been fully characterised including a crystal and molecular structure study. The mechanism of formation of the final product has been examined and results are reported.
Resumo:
The irreversible binding of selected sulfur-containing flavor compounds to proteins was investigated in aqueous solutions containing ovalbumin and a mixture of disulfides (diethyl, dipropyl, dibutyl, diallyl, and 2-furfuryl methyl) using solid-phase micro-extraction (SPME). In systems which had not been heated, the recovery of disulfides from the headspace above the protein at the native pH (6.7) was similar to that from an aqueous blank. However, significant losses were observed when the pH of the solution was increased to 8.0. When the protein was denatured by heating, much greater losses were observed and some free thiols were produced. In similar heat-denatured systems at pH 2.0, no losses of disulfides were observed. Disulfides containing allyl or furfuryl groups were more reactive than saturated alkyl disulfides. Interchange reactions between protein sulfhydryl groups and the disulfides are believed to be responsible for the loss of the disulfides.
Resumo:
The invention discloses an improved process for the preparation of 2,2,5,5-tetrasubstituted hexane-1,6-dicarbonyl compounds, and in particular diethyl 2,2,5,5-tetramethylhexanedioate and dimethyl 2,2,5,5-tetramethylhexanedioate, by the alkylation of 1,2-difunctional ethane compounds with enolates of carbonyl compounds. The process provides higher yields and greater synthetic brevity than existing processes.
Resumo:
Pasture-based ruminant production systems are common in certain areas of the world, but energy evaluation in grazing cattle is performed with equations developed, in their majority, with sheep or cattle fed total mixed rations. The aim of the current study was to develop predictions of metabolisable energy (ME) concentrations in fresh-cut grass offered to non-pregnant non-lactating cows at maintenance energy level, which may be more suitable for grazing cattle. Data were collected from three digestibility trials performed over consecutive grazing seasons. In order to cover a range of commercial conditions and data availability in pasture-based systems, thirty-eight equations for the prediction of energy concentrations and ratios were developed. An internal validation was performed for all equations and also for existing predictions of grass ME. Prediction error for ME using nutrient digestibility was lowest when gross energy (GE) or organic matter digestibilities were used as sole predictors, while the addition of grass nutrient contents reduced the difference between predicted and actual values, and explained more variation. Addition of N, GE and diethyl ether extract (EE) contents improved accuracy when digestible organic matter in DM was the primary predictor. When digestible energy was the primary explanatory variable, prediction error was relatively low, but addition of water-soluble carbohydrates, EE and acid-detergent fibre contents of grass decreased prediction error. Equations developed in the current study showed lower prediction errors when compared with those of existing equations, and may thus allow for an improved prediction of ME in practice, which is critical for the sustainability of pasture-based systems.