76 resultados para developmental trajectories
em CentAUR: Central Archive University of Reading - UK
Resumo:
An important part of strategic planning’s purpose should be to attempt to forecast the future, not simply to belatedly respond to events, or accept the future as inevitable. This paper puts forward a conceptual approach for seeking to achieve these aims and uses the Bournemouth and Poole area in Dorset as a vehicle for applying the basic methodology. The area has been chosen because of the significant issues that it currently faces in planning terms; and its future development possibilities. In order that alternative future choices for the area – different ‘developmental trajectories’ – can be evaluated, they must be carefully and logically constructed. Four Futures for Bournemouth/Poole have been put forward; they are titled and colour-coded: Future One is Maximising Growth – Golden Prospect which seeks to achieve the highest level of economic prosperity of the area; Future Two is Incremental Growth – Solid Silver which attempts to facilitate a steady, continuing, controlled pattern of the development for the area; Future Three is Steady State – Cobalt Blue which suggests that people in the area could be more concerned with preserving their quality of life in terms of their leisure and recreation rather than increasing wealth; Future Four is Environment First – Jade Green which makes the area’s environmental protection its top priority even at the possible expense of economic prosperity. The scenarios proposed here are not sacrosanct. Nor are they simply confined to the Bournemouth and Poole area. In theory, suitably modified, they could use in a variety of different contexts. Consideration of the scenarios – wherever located - might then generate other, additional scenarios. These are called hybrids, alloys and amalgams. Likewise it might identify some of them as inappropriate or impossible. Most likely, careful consideration of the scenarios will suggest hybrid scenarios, in which features from different scenarios are combined to produce alternative or additional futures for consideration. The real issue then becomes how best to fashion such a future for the particular area under consideration
Resumo:
The temperament style Behavioural Inhibition (BI) has been implicated as a risk factor for the development of internalising disorders such as anxiety. Of interest is what factors influence the developmental trajectories of both inhibited and disinhibited children and the development of psychopathology. One such factor is risk-taking behaviour. Using the computer based Balloon Analogue Risk Task, we assessed risk taking behaviour in behaviourally inhibited (n = 27) and behaviourally disinhibited (n = 43) children. This is the first study to examine the relationship between BI, executive functioning and risk-taking. The results indicated Behavioural Inhibition was not related to risk-taking but that inhibitory control predicted reward focused results. These findings illustrate how inhibitory control affects risk-taking and risk avoidance in both inhibited and disinhibited children.
Resumo:
Background, aim and scope Soil organic matter (SOM) is known to increase with time as landscapes recover after a major disturbance; however, little is known about the evolution of the chemistry of SOM in reconstructed ecosystems. In this study, we assessed the development of SOM chemistry in a chronosequence (space for time substitution) of restored Jarrah forest sites in Western Australia. Materials and methods Replicated samples were taken at the surface of the mineral soil as well as deeper in the profile at sites of 1, 3, 6, 9, 12, and 17 years of age. A molecular approach was developed to distinguish and quantify numerous individual compounds in SOM. This used accelerated solvent extraction in conjunction with gas chromatography mass spectrometry. A novel multivariate statistical approach was used to assess changes in accelerated solvent extraction (ASE)-gas chromatography-mass spectrometry (GCMS) spectra. This enabled us to track SOM developmental trajectories with restoration time. Results Results showed total carbon concentrations approached that of native forests soils by 17 years of restoration. Using the relate protocol in PRIMER, we demonstrated an overall linear relationship with site age at both depths, indicating that changes in SOM chemistry were occurring. Conclusions The surface soils were seen to approach native molecular compositions while the deeper soil retained a more stable chemical signature, suggesting litter from the developing diverse plant community has altered SOM near the surface. Our new approach for assessing SOM development, combining ASE-GCMS with illuminating multivariate statistical analysis, holds great promise to more fully develop ASE for the characterisation of SOM.
Resumo:
It has been postulated that autism spectrum disorder is underpinned by an ‘atypical connectivity’ involving higher-order association brain regions. To test this hypothesis in a large cohort of adults with autism spectrum disorder we compared the white matter networks of 61 adult males with autism spectrum disorder and 61 neurotypical controls, using two complementary approaches to diffusion tensor magnetic resonance imaging. First, we applied tract-based spatial statistics, a ‘whole brain’ non-hypothesis driven method, to identify differences in white matter networks in adults with autism spectrum disorder. Following this we used a tract-specific analysis, based on tractography, to carry out a more detailed analysis of individual tracts identified by tract-based spatial statistics. Finally, within the autism spectrum disorder group, we studied the relationship between diffusion measures and autistic symptom severity. Tract-based spatial statistics revealed that autism spectrum disorder was associated with significantly reduced fractional anisotropy in regions that included frontal lobe pathways. Tractography analysis of these specific pathways showed increased mean and perpendicular diffusivity, and reduced number of streamlines in the anterior and long segments of the arcuate fasciculus, cingulum and uncinate—predominantly in the left hemisphere. Abnormalities were also evident in the anterior portions of the corpus callosum connecting left and right frontal lobes. The degree of microstructural alteration of the arcuate and uncinate fasciculi was associated with severity of symptoms in language and social reciprocity in childhood. Our results indicated that autism spectrum disorder is a developmental condition associated with abnormal connectivity of the frontal lobes. Furthermore our findings showed that male adults with autism spectrum disorder have regional differences in brain anatomy, which correlate with specific aspects of autistic symptoms. Overall these results suggest that autism spectrum disorder is a condition linked to aberrant developmental trajectories of the frontal networks that persist in adult life.
Resumo:
The aim of the present study is to investigate the developmental profile of three aspects of prosody function, i.e. affect, focus and turn-endings in children with Williams and in those with Down’s syndrome compared to typically developing English speaking children. The tasks used were part of the computer-based battery, Profiling Elements of Prosody for Speech Communication (Peppe, McCann & Gibon, 2003). Cross-sectional developmental trajectories linking chronological and non-verbal mental age and affects and turn-ending functions of prosody were constructed. The results showed an atypical profile in both clinical populations. More interestingly, the profiles were atypical for different reasons, suggesting multiple and possibly different developmental pathways to the acquisition of prosody in these two populations.
Resumo:
Suppression of depolarizing postsynaptic potentials and isolated GABA-A receptor-mediated fast inhibitory postsynaptic potentials by the muscarinic acetylcholine receptor agonist, oxotremorine-M (10 microM), was investigated in adult and immature (P14-P30) rat piriform cortical (PC) slices using intracellular recording. Depolarizing postsynaptic potentials evoked by layers II-III stimulation underwent concentration-dependent inhibition in oxotremorine-M that was most likely presynaptic and M2 muscarinic acetylcholine receptor-mediated in immature, but M1-mediated in adult (P40-P80) slices; percentage inhibition was smaller in immature than in adult piriform cortex. In contrast, compared with adults, layer Ia-evoked depolarizing postsynaptic potentials in immature piriform cortex slices in oxotremorine-M, showed a prolonged multiphasic depolarization with superimposed fast transients and spikes, and an increased 'all-or-nothing' character. Isolated N-methyl-d-aspartate receptor-mediated layer Ia depolarizing postsynaptic potentials (although significantly larger in immature slices) were however, unaffected by oxotremorine-M, but blocked by dl-2-amino-5-phosphonovaleric acid. Fast inhibitory postsynaptic potentials evoked by layer Ib or layers II-III-fiber stimulation in immature slices were significantly smaller than in adults, despite similar estimated mean reversal potentials ( approximately -69 and -70 mV respectively). In oxotremorine-M, only layer Ib-fast inhibitory postsynaptic potentials were suppressed; suppression was again most likely presynaptic M2-mediated in immature slices, but M1-mediated in adults. The degree of fast inhibitory postsynaptic potential suppression was however, greater in immature than in adult piriform cortex. Our results demonstrate some important physiological and pharmacological differences between excitatory and inhibitory synaptic systems in adult and immature piriform cortex that could contribute toward the increased susceptibility of this region to muscarinic agonist-induced epileptiform activity in immature brain slices.
Resumo:
This study investigated the development of three aspects of linguistic prosody in a group of children with Williams syndrome compared to typically developing children. The prosodic abilities investigated were: (1) the ability to understand and use prosody to make specific words or syllables stand out in an utterance (focus); (2) the ability to understand and use prosody to disambiguate complex noun phrases (chunking); (3) the ability to understand and use prosody to regulate conversational behaviour (turn-end). The data were analysed using a cross-sectional developmental trajectory approach. The results showed that, relative to chronological age, there was a delayed onset in the development of the ability of children with WS to use prosody to signal the most important word in an utterance (the focus function). Delayed rate of development was found for all the other aspects of expressive and receptive prosody under investigation. However, when non-verbal mental age was taken into consideration, there were no differences between the children with WS and the controls neither with the onset nor with the rate of development for any of the prosodic skills under investigation apart from the ability to use prosody in order to regulate conversational behaviour. We conclude that prosody is not a ‘preserved’ cognitive skill in WS. The genetic factors, development in other cognitive domains and environmental influences affect developmental pathways and as a result, development proceeds along an atypical trajectory.
Resumo:
The skill of numerical Lagrangian drifter trajectories in three numerical models is assessed by comparing these numerically obtained paths to the trajectories of drifting buoys in the real ocean. The skill assessment is performed using the two-sample Kolmogorov–Smirnov statistical test. To demonstrate the assessment procedure, it is applied to three different models of the Agulhas region. The test can either be performed using crossing positions of one-dimensional sections in order to test model performance in specific locations, or using the total two-dimensional data set of trajectories. The test yields four quantities: a binary decision of model skill, a confidence level which can be used as a measure of goodness-of-fit of the model, a test statistic which can be used to determine the sensitivity of the confidence level, and cumulative distribution functions that aid in the qualitative analysis. The ordering of models by their confidence levels is the same as the ordering based on the qualitative analysis, which suggests that the method is suited for model validation. Only one of the three models, a 1/10° two-way nested regional ocean model, might have skill in the Agulhas region. The other two models, a 1/2° global model and a 1/8° assimilative model, might have skill only on some sections in the region
Resumo:
Background and Aims: Using two parental clones of outcrossing Trifolium ambiguum as a potential model system, we examined how during seed development the maternal parent, number of seeds per pod, seed position within the pod, and pod position within the inflorescence influenced individual seed fresh weight, dry weight, water content, germinability, desiccation tolerance, hardseededness, and subsequent longevity of individual seeds. Methods: Near simultaneous, manual reciprocal crosses were carried out between clonal lines for two experiments. Infructescences were harvested at intervals during seed development. Each individual seed was weighed and then used to determine dry weight or one of the physiological behaviour traits. Key Results: Whilst population mass maturity was reached at 33–36 days after pollination (DAP), seed-to-seed variation in maximum seed dry weight, when it was achieved, and when maturation drying commenced, was considerable. Individual seeds acquired germinability between 14 and 44 DAP, desiccation tolerance between 30 and 40 DAP, and the capability to become hardseeded between 30 and 47 DAP. The time for viability to fall to 50 % (p50) at 60 % relative humidity and 45 °C increased between 36 and 56 DAP, when the seed coats of most individuals had become dark orange, but declined thereafter. Individual seed f. wt at harvest did not correlate with air-dry storage survival period. Analysing survival data for cohorts of seeds reduced the standard deviation of the normal distribution of seed deaths in time, but no sub-population showed complete uniformity of survival period. Conclusions: Variation in individual seed behaviours within a developing population is inherent and inevitable. In this outbreeder, there is significant variation in seed longevity which appears dependent on embryo genotype with little effect of maternal genotype or architectural factors.
Resumo:
Seed quality may be compromised if seeds are harvested before natural dispersal (shedding). It has been shown previously that slow or delayed drying can increase potential quality compared with immediate rapid drying. This study set out to investigate whether or not there is a critical moisture content, below which drying terminates maturation events for seeds harvested after mass maturity but before dispersal. Seeds of foxglove (Digitalis purpurea) in the post-abscission pre-dispersal phase were held at between 15 and 95 % RH for 4 or 8 d, with or without re-hydration to 95 % RH for a further 4 d, before drying to equilibrium at 15 % RH. In addition, dry seeds were primed for 48 h at -1 MPa. Subsequent seed longevity was assessed at 60 % RH and 45 degrees C. Rate of germination and longevity were improved by holding seeds at a wide range of humidities after harvest. Longevity was further improved by re-hydration at 95 % RH. Priming improved the longevity of the seeds dried immediately after harvest, but not of those first held at 95 % RH for 8 d prior to drying. Maturation continued ex planta in these post-abscission, pre-dispersal seeds of D. purpurea dried at 15-80 % RH at a rate correlated positively with RH (cf. ageing of mature seeds). Subsequent re-hydration at 95 % RH enabled a further improvement in quality. Priming seeds initially stored air-dry for 3 months also allowed maturation events to resume. However, once individual seeds within the population had reached maximum longevity, priming had a negative impact on their subsequent survival.
Resumo:
Prenatal testosterone excess leads to neuroendocrine, ovarian, and metabolic disruptions, culminating in reproductive phenotypes mimicking that of women with polycystic ovary syndrome (PCOS). The objective of this study was to determine the consequences of prenatal testosterone treatment on periovulatory hormonal dynamics and ovulatory outcomes. To generate prenatal testosterone-treated females, pregnant sheep were injected intramuscularly (days 30-90 of gestation, term = 147 days) with 100 mg of testosterone-propionate in cottonseed oil semi-weekly. Female offspring born to untreated control females and prenatal testosterone-treated females were then studied during their first two breeding seasons. Sheep were given two injections of prostaglandin F-2alpha 11 days apart, and blood samples were collected at 2-h intervals for 120 h, 10-min intervals for 8 h during the luteal phase (first breeding season only), and daily for an additional 15 days to characterize changes in reproductive hormonal dynamics. During the first breeding season, prenatal testosterone-treated females manifested disruptions in the timing and magnitude of primary gonadotropin surges, luteal defects, and reduced responsiveness to progesterone negative feedback. Disruptions in the periovulatory sequence of events during the second breeding season included: 1) delayed but increased preovulatory estradiol rise, 2) delayed and severely reduced primary gonadotropin surge in prenatal testosterone-treated females having an LH surge, 3) tendency for an amplified secondary FSH surge and a shift in the relative balance of FSH regulatory proteins, and 4) luteal responses that ranged from normal to anovulatory. These outcomes are likely to be of relevance to developmental origin of infertility disorders and suggest that differences in fetal exposure or fetal susceptibility to testosterone may account for the variability in reproductive phenotypes.
Resumo:
Objectives: Myostatin, a member of the transforming growth factor-beta (TGF-beta) family, plays a key role in skeletal muscle myogenesis by limiting hyperplastic and hypertrophic muscle growth. In cardiac muscle, myostatin has been shown to limit agonist-induced cardiac hypertrophic growth. However, its role in cardiac hyperplastic growth remains undetermined. The aim of this study was to characterise the expression of myostatin in developing myocardium, determine its effect on cardiomyocyte proliferation, and explore the signalling mechanisms affected by myostatin in dividing cardiomyocytes. Methods: We used quantitative PCR and Western blotting to study the expression of myostatin in cardiomyocytes isolated from rat myocardium at different developmental ages. We. determined the effect of recombinant myostatin on proliferation and cell viability in dividing cardiomyocytes in culture. We analysed myostatin's effect on cardiomyocyte cell cycle progression by flow cytometry and used Western blotting to explore the signalling mechanisms involved. Results: Myostatin is expressed differentially in cardiomyocytes during cardiac development such that increasing expression correlated with a low cardiomyocyte proliferation index. Proliferating foetal cardiomyocytes, from embryos at 18 days of gestation, expressed low levels of myostatin mRNA and protein, whereas isolated cardiomyocytes from postnatal day 10 hearts, wherein the majority of cardiomyocytes have lost their ability to proliferate, displayed a 6-fold increase in myostatin expression. Our in vitro studies demonstrated that myostatin inhibited proliferation of dividing foetal and neonatal cardiomyocytes. Flow cytometric analysis showed that this inhibition occurs mainly via a block in the G1-S phase transition of the cardiomyocyte cell cycle. Western blot analysis showed that part of the mechanism underpinning the inhibition of cardiomyocyte proliferation by myostatin involves phosphorylation of SMAD2 and altered expressions of the cell cycle proteins p21 and CDK2. Conclusions: We conclude that myostatin is an inhibitor of cardiomyocyte proliferation with the potential to limit cardiomyocyte hyperplastic growth by altering cardiac cell cycle progression. (c) 2007 European Society of Cardiology. Published by Elsevier B.V. All fights reserved.
Resumo:
Ovaries were collected over a period of two years from heifers slaughtered at under 30 months of age and used to harvest 1757 oocytes. After in vitro maturation, fertilisation and culture, the proportions of oocytes and cleaved embryos that developed to blastocysts were significantly higher (P < 0.01) in the autumn, from September to November, than in the spring, from March to May. In contrast, embryo development, as assessed by oocytes that developed to eight or more cells and blastocysts, was lowest (P < 0.01) in the spring. These results were consistent during the two-year study, indicating a seasonal fluctuation in oocyte competence.