119 resultados para detailed balance
em CentAUR: Central Archive University of Reading - UK
Resumo:
The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the River Lambourn, a Chalk river-system in southern England. The model's abilities to simulate the long-term trend and seasonal patterns in observed stream water nitrate concentrations from 1920 to 2003 were tested. This is the first time a semi-distributed, daily time-step model has been applied to simulate such a long time period and then used to calculate detailed catchment nutrient budgets which span the conversion of pasture to arable during the late 1930s and 1940s. Thus, this work goes beyond source apportionment and looks to demonstrate how such simulations can be used to assess the state of the catchment and develop an understanding of system behaviour. The mass-balance results from 1921, 1922, 1991, 2001 and 2002 are presented and those for 1991 are compared to other modelled and literature values of loads associated with nitrogen soil processes and export. The variations highlighted the problem of comparing modelled fluxes with point measurements but proved useful for identifying the most poorly understood inputs and processes thereby providing an assessment of input data and model structural uncertainty. The modelled terrestrial and instream mass-balances also highlight the importance of the hydrological conditions in pollutant transport. Between 1922 and 2002, increased inputs of nitrogen from fertiliser, livestock and deposition have altered the nitrogen balance with a shift from possible reduction in soil fertility but little environmental impact in 1922, to a situation of nitrogen accumulation in the soil, groundwater and instream biota in 2002. In 1922 and 2002 it was estimated that approximately 2 and 18 kg N ha(-1) yr(-1) respectively were exported from the land to the stream. The utility of the approach and further considerations for the best use of models are discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the River Lambourn, a Chalk river-system in southern England. The model's abilities to simulate the long-term trend and seasonal patterns in observed stream water nitrate concentrations from 1920 to 2003 were tested. This is the first time a semi-distributed, daily time-step model has been applied to simulate such a long time period and then used to calculate detailed catchment nutrient budgets which span the conversion of pasture to arable during the late 1930s and 1940s. Thus, this work goes beyond source apportionment and looks to demonstrate how such simulations can be used to assess the state of the catchment and develop an understanding of system behaviour. The mass-balance results from 1921, 1922, 1991, 2001 and 2002 are presented and those for 1991 are compared to other modelled and literature values of loads associated with nitrogen soil processes and export. The variations highlighted the problem of comparing modelled fluxes with point measurements but proved useful for identifying the most poorly understood inputs and processes thereby providing an assessment of input data and model structural uncertainty. The modelled terrestrial and instream mass-balances also highlight the importance of the hydrological conditions in pollutant transport. Between 1922 and 2002, increased inputs of nitrogen from fertiliser, livestock and deposition have altered the nitrogen balance with a shift from possible reduction in soil fertility but little environmental impact in 1922, to a situation of nitrogen accumulation in the soil, groundwater and instream biota in 2002. In 1922 and 2002 it was estimated that approximately 2 and 18 kg N ha(-1) yr(-1) respectively were exported from the land to the stream. The utility of the approach and further considerations for the best use of models are discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Urban land surface schemes have been developed to model the distinct features of the urban surface and the associated energy exchange processes. These models have been developed for a range of purposes and make different assumptions related to the inclusion and representation of the relevant processes. Here, the first results of Phase 2 from an international comparison project to evaluate 32 urban land surface schemes are presented. This is the first large-scale systematic evaluation of these models. In four stages, participants were given increasingly detailed information about an urban site for which urban fluxes were directly observed. At each stage, each group returned their models' calculated surface energy balance fluxes. Wide variations are evident in the performance of the models for individual fluxes. No individual model performs best for all fluxes. Providing additional information about the surface generally results in better performance. However, there is clear evidence that poor choice of parameter values can cause a large drop in performance for models that otherwise perform well. As many models do not perform well across all fluxes, there is need for caution in their application, and users should be aware of the implications for applications and decision making.
Resumo:
The Arctic is a region particularly susceptible to rapid climate change. General circulation models (GCMs) suggest a polar amplification of any global warming signal by a factor of about 1.5 due, in part, to sea ice feedbacks. The dramatic recent decline in multi-year sea ice cover lies outside the standard deviation of the CMIP3 ensemble GCM predictions. Sea ice acts as a barrier between cold air and warmer oceans during winter, as well as inhibiting evaporation from the ocean surface water during the summer. An ice free Arctic would likely have an altered hydrological cycle with more evaporation from the ocean surface leading to changes in precipitation distribution and amount. Using the U.K. Met Office Regional Climate Model (RCM), HadRM3, the atmospheric effects of the observed and projected reduction in Arctic sea ice are investigated. The RCM is driven by the atmospheric GCM HadAM3. Both models are forced with sea surface temperature and sea ice for the period 2061-2090 from the CMIP3 HadGEM1 experiments. Here we use an RCM at 50km resolution over the Arctic and 25km over Svalbard, which captures well the present-day pattern of precipitation and provides a detailed picture of the projected changes in the behaviour of the oceanic-atmosphere moisture fluxes and how they affect precipitation. These experiments show that the projected 21stCentury sea ice decline alone causes large impacts to the surface mass balance (SMB) on Svalbard. However Greenland’s SMB is not significantly affected by sea ice decline alone, but responds with a strongly negative shift in SMB when changes to SST are incorporated into the experiments. This is the first study to characterise the impact of changes in future sea ice to Arctic terrestrial cryosphere mass balance.
Resumo:
The parameterization of surface heat-flux variability in urban areas relies on adequate representation of surface characteristics. Given the horizontal resolutions (e.g. ≈0.1–1km) currently used in numerical weather prediction (NWP) models, properties of the urban surface (e.g. vegetated/built surfaces, street-canyon geometries) often have large spatial variability. Here, a new approach based on Urban Zones to characterize Energy partitioning (UZE) is tested within a NWP model (Weather Research and Forecasting model;WRF v3.2.1) for Greater London. The urban land-surface scheme is the Noah/Single-Layer Urban Canopy Model (SLUCM). Detailed surface information (horizontal resolution 1 km)in central London shows that the UZE offers better characterization of surface properties and their variability compared to default WRF-SLUCM input parameters. In situ observations of the surface energy fluxes and near-surface meteorological variables are used to select the radiation and turbulence parameterization schemes and to evaluate the land-surface scheme
Resumo:
Many urban surface energy balance models now exist. These vary in complexity from simple schemes that represent the city as a concrete slab, to those which incorporate detailed representations of momentum and energy fluxes distributed within the atmospheric boundary layer. While many of these schemes have been evaluated against observations, with some models even compared with the same data sets, such evaluations have not been undertaken in a controlled manner to enable direct comparison. For other types of climate model, for instance the Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS) experiments (Henderson-Sellers et al., 1993), such controlled comparisons have been shown to provide important insights into both the mechanics of the models and the physics of the real world. This paper describes the progress that has been made to date on a systematic and controlled comparison of urban surface schemes. The models to be considered, and their key attributes, are described, along with the methodology to be used for the evaluation.
Resumo:
The use of virtualization in high-performance computing (HPC) has been suggested as a means to provide tailored services and added functionality that many users expect from full-featured Linux cluster environments. The use of virtual machines in HPC can offer several benefits, but maintaining performance is a crucial factor. In some instances the performance criteria are placed above the isolation properties. This selective relaxation of isolation for performance is an important characteristic when considering resilience for HPC environments that employ virtualization. In this paper we consider some of the factors associated with balancing performance and isolation in configurations that employ virtual machines. In this context, we propose a classification of errors based on the concept of “error zones”, as well as a detailed analysis of the trade-offs between resilience and performance based on the level of isolation provided by virtualization solutions. Finally, a set of experiments are performed using different virtualization solutions to elucidate the discussion.
Resumo:
This paper focuses on the language shift phenomenon in Singapore as a consequence of the top-town policies. By looking at bilingual family language policies it examines the characteristics of Singapore’s multilingual nature and cultural diversity. Specifically, it looks at what languages are practiced and how family language policies are enacted in Singaporean English-Chinese bilingual families, and to what extend macro language policies – i.e. national and educational language policies influence and interact with family language policies. Involving 545 families and including parents and grandparents as participants, the study traces the trajectory of the policy history. Data sources include 2 parts: 1) a prescribed linguistic practices survey; and 2) participant observation of actual negotiation of FLP in face-to-face social interaction in bilingual English-Chinese families. The data provides valuable information on how family language policy is enacted and language practices are negotiated, and what linguistic practices have been changed and abandoned against the background of the Speaking Mandarin Campaign and the current bilingual policy implemented in the 1970s. Importantly, the detailed face-to-face interactions and linguistics practices are able to enhance our understanding of the subtleties and processes of language (dis)continuity in relation to policy interventions. The study also discusses the reality of language management measures in contrast to the government’s ‘separate bilingualism’ (Creese & Blackledge, 2011) expectations with regard to ‘striking a balance’ between Asian and Western culture (Curdt-Christiansen & Silver 2013; Shepherd, 2005) and between English and mother tongue languages (Curdt-Christiansen, 2014). Demonstrating how parents and children negotiate their family language policy through translanguaging or heteroglossia practices (Canagarajah, 2013; Garcia & Li Wei, 2014), this paper argues that ‘striking a balance’ as a political ideology places emphasis on discrete and separate notions of cultural and linguistic categorization and thus downplays the significant influences from historical, political and sociolinguistic contexts in which people find themselves. This simplistic view of culture and linguistic code will inevitably constrain individuals’ language expression as it regards code switching and translanguaging as delimited and incompetent language behaviour.
Resumo:
A combination of satellite data, reanalysis products and climate models are combined to monitor changes in water vapour, clear-sky radiative cooling of the atmosphere and precipitation over the period 1979-2006. Climate models are able to simulate observed increases in column integrated water vapour (CWV) with surface temperature (Ts) over the ocean. Changes in the observing system lead to spurious variability in water vapour and clear-sky longwave radiation in reanalysis products. Nevertheless all products considered exhibit a robust increase in clear-sky longwave radiative cooling from the atmosphere to the surface; clear-sky longwave radiative cooling of the atmosphere is found to increase with Ts at the rate of ~4 Wm-2 K-1 over tropical ocean regions of mean descending vertical motion. Precipitation (P) is tightly coupled to atmospheric radiative cooling rates and this implies an increase in P with warming at a slower rate than the observed increases in CWV. Since convective precipitation depends on moisture convergence, the above implies enhanced precipitation over convective regions and reduced precipitation over convectively suppressed regimes. To quantify this response, observed and simulated changes in precipitation rate are analysed separately over regions of mean ascending and descending vertical motion over the tropics. The observed response is found to be substantially larger than the model simulations and climate change projections. It is currently not clear whether this is due to deficiencies in model parametrizations or errors in satellite retrievals.
Resumo:
The global radiation balance of the atmosphere is still poorly observed, particularly at the surface. We investigate the observed radiation balance at (1) the surface using the ARM Mobile Facility in Niamey, Niger, and (2) the top of the atmosphere (TOA) over West Africa using data from the Geostationary Earth Radiation Budget (GERB) instrument on board Meteosat-8. Observed radiative fluxes are compared with predictions from the global numerical weather prediction (NWP) version of the Met Office Unified Model (MetUM). The evaluation points to major shortcomings in the NWP model's radiative fluxes during the dry season (December 2005 to April 2006) arising from (1) a lack of absorbing aerosol in the model (mineral dust and biomass burning aerosol) and (2) a poor specification of the surface albedo. A case study of the major Saharan dust outbreak of 6–12 March 2006 is used to evaluate a parameterization of mineral dust for use in the NWP models. The model shows good predictability of the large-scale flow out to 4–5 days with the dust parameterization providing reasonable dust uplift, spatial distribution, and temporal evolution for this strongly forced dust event. The direct radiative impact of the dust reduces net downward shortwave (SW) flux at the surface (TOA) by a maximum of 200 W m−2 (150 W m−2), with a SW heating of the atmospheric column. The impacts of dust on terrestrial radiation are smaller. Comparisons of TOA (surface) radiation balance with GERB (ARM) show the “dusty” forecasts reduce biases in the radiative fluxes and improve surface temperatures and vertical thermodynamic structure.
Resumo:
We present an application of birth-and-death processes on configuration spaces to a generalized mutation4 selection balance model. The model describes the aging of population as a process of accumulation of mu5 tations in a genotype. A rigorous treatment demands that mutations correspond to points in abstract spaces. 6 Our model describes an infinite-population, infinite-sites model in continuum. The dynamical equation which 7 describes the system, is of Kimura-Maruyama type. The problem can be posed in terms of evolution of states 8 (differential equation) or, equivalently, represented in terms of Feynman-Kac formula. The questions of interest 9 are the existence of a solution, its asymptotic behavior, and properties of the limiting state. In the non-epistatic 10 case the problem was posed and solved in [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005, 11 35(1)]. In our model we consider a topological space X as the space of positions of mutations and the influence of epistatic potentials
Resumo:
We investigate the question of how many facets are needed to represent the energy balance of an urban area by developing simplified 3-, 2- and 1-facet versions of a 4-facet energy balance model of two-dimensional streets and buildings. The 3-facet model simplifies the 4-facet model by averaging over the canyon orientation, which results in similar net shortwave and longwave balances for both wall facets, but maintains the asymmetry in the heat fluxes within the street canyon. For the 2-facet model, on the assumption that the wall and road temperatures are equal, the road and wall facets can be combined mathematically into a single street-canyon facet with effective values of the heat transfer coefficient, albedo, emissivity and thermodynamic properties, without further approximation. The 1-facet model requires the additional assumption that the roof temperature is also equal to the road and wall temperatures. Idealised simulations show that the geometry and material properties of the walls and road lead to a large heat capacity of the combined street canyon, whereas the roof behaves like a flat surface with low heat capacity. This means that the magnitude of the diurnal temperature variation of the street-canyon facets are broadly similar and much smaller than the diurnal temperature variation of the roof facets. Consequently, the approximation that the street-canyon facets have similar temperatures is sound, and the road and walls can be combined into a single facet. The roof behaves very differently and a separate roof facet is required. Consequently, the 2-facet model performs similarly to the 4-facet model, while the 1-facet model does not. The models are compared with previously published observations collected in Mexico City. Although the 3- and 2-facet models perform better than the 1-facet model, the present models are unable to represent the phase of the sensible heat flux. This result is consistent with previous model comparisons, and we argue that this feature of the data cannot be produced by a single column model. We conclude that a 2-facet model is necessary, and for numerical weather prediction sufficient, to model an urban surface, and that this conclusion is robust and therefore applicable to more general geometries.
Resumo:
This paper presents the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes), which is a vertical (1-D) integrated radiative transfer and energy balance model. The model links visible to thermal infrared radiance spectra (0.4 to 50 μm) as observed above the canopy to the fluxes of water, heat and carbon dioxide, as a function of vegetation structure, and the vertical profiles of temperature. Output of the model is the spectrum of outgoing radiation in the viewing direction and the turbulent heat fluxes, photosynthesis and chlorophyll fluorescence. A special routine is dedicated to the calculation of photosynthesis rate and chlorophyll fluorescence at the leaf level as a function of net radiation and leaf temperature. The fluorescence contributions from individual leaves are integrated over the canopy layer to calculate top-of-canopy fluorescence. The calculation of radiative transfer and the energy balance is fully integrated, allowing for feedback between leaf temperatures, leaf chlorophyll fluorescence and radiative fluxes. Leaf temperatures are calculated on the basis of energy balance closure. Model simulations were evaluated against observations reported in the literature and against data collected during field campaigns. These evaluations showed that SCOPE is able to reproduce realistic radiance spectra, directional radiance and energy balance fluxes. The model may be applied for the design of algorithms for the retrieval of evapotranspiration from optical and thermal earth observation data, for validation of existing methods to monitor vegetation functioning, to help interpret canopy fluorescence measurements, and to study the relationships between synoptic observations with diurnally integrated quantities. The model has been implemented in Matlab and has a modular design, thus allowing for great flexibility and scalability.