2 resultados para deposition temperature
em CentAUR: Central Archive University of Reading - UK
Resumo:
Banded sediments outcrop widely in the intertidal zone of the Severn Estuary and have been suggested, on the basis of textural analysis, to have formed in response to seasonal variations in sea temperature and windiness (Holocene, 14 (2004) 536). Here palynological and sedimentological analyses of banded sediments of mid-Holocene date from Gold Cliff, on the Welsh side of the Severn Estuary, are combined to test and further develop the hypothesis of seasonal deposition. Pollen percentage and concentration data are presented from a short sequence of bands to establish whether textural variations in the bands coincide with variations in pollen content reflecting seasonal flowering patterns. It is shown that fine-grained band parts contain higher total pollen concentrations, and a higher proportion of pollen from late spring- to summer-flowering plants, than coarse-grained band parts. Pollen in the coarser deposits appears primarily to reflect deposition from the buffering `reservoir' of suspended pollen in the estuarine water-body and from rivers, when there is little pollen in the air in winter, while the finer sediments contain pollen deposited from the atmosphere during the flowering season, superimposed on these `background' sources. The potential of such deposits for refining chronologies and identifying seasonality of coastal processes is noted, and the results of charcoal particle analysis of the bands presented as an example of how they have the potential to shed light on seasonal and annual patterns of human activity. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The Sea and Land Surface Temperature Radiometer (SLSTR) is a nine channel visible and infrared high precision radiometer designed to provide climate data of global sea and land surface temperatures. The SLSTR payload is destined to fly on the Ocean and Medium-Resolution Land Mission for the ESA/EU Global Monitoring for Environment and Security (GMES) Programme Sentinel-3 mission to measure the sea and land temperature and topography for near real-time environmental and atmospheric climate monitoring of the Earth. In this paper we describe the optical layout of infrared optics in the instrument, spectral thin-film multilayer design, and system channel throughput analysis for the combined interference filter and dichroic beamsplitter coatings to discriminate wavelengths at 3.74, 10.85 & 12.0 μm. The rationale for selection of thin-film materials, deposition technique, and environmental testing, inclusive of humidity, thermal cycling and ionizing radiation testing are also described.