91 resultados para decentralised data fusion framework

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a world of almost permanent and rapidly increasing electronic data availability, techniques of filtering, compressing, and interpreting this data to transform it into valuable and easily comprehensible information is of utmost importance. One key topic in this area is the capability to deduce future system behavior from a given data input. This book brings together for the first time the complete theory of data-based neurofuzzy modelling and the linguistic attributes of fuzzy logic in a single cohesive mathematical framework. After introducing the basic theory of data-based modelling, new concepts including extended additive and multiplicative submodels are developed and their extensions to state estimation and data fusion are derived. All these algorithms are illustrated with benchmark and real-life examples to demonstrate their efficiency. Chris Harris and his group have carried out pioneering work which has tied together the fields of neural networks and linguistic rule-based algortihms. This book is aimed at researchers and scientists in time series modeling, empirical data modeling, knowledge discovery, data mining, and data fusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When performing data fusion, one often measures where targets were and then wishes to deduce where targets currently are. There has been recent research on the processing of such out-of-sequence data. This research has culminated in the development of a number of algorithms for solving the associated tracking problem. This paper reviews these different approaches in a common Bayesian framework and proposes an architecture that orthogonalises the data association and out-of-sequence problems such that any combination of solutions to these two problems can be used together. The emphasis is not on advocating one approach over another on the basis of computational expense, but rather on understanding the relationships among the algorithms so that any approximations made are explicit. Results for a multi-sensor scenario involving out-of-sequence data association are used to illustrate the utility of this approach in a specific context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In data fusion systems, one often encounters measurements of past target locations and then wishes to deduce where the targets are currently located. Recent research on the processing of such out-of-sequence data has culminated in the development of a number of algorithms for solving the associated tracking problem. This paper reviews these different approaches in a common Bayesian framework and proposes an architecture that orthogonalises the data association and out-of-sequence problems such that any combination of solutions to these two problems can be used together. The emphasis is not on advocating one approach over another on the basis of computational expense, but rather on understanding the relationships between the algorithms so that any approximations made are explicit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many algorithms have been developed to achieve motion segmentation for video surveillance. The algorithms produce varying performances under the infinite amount of changing conditions. It has been recognised that individually these algorithms have useful properties. Fusing the statistical result of these algorithms is investigated, with robust motion segmentation in mind.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context-aware multimodal interactive systems aim to adapt to the needs and behavioural patterns of users and offer a way forward for enhancing the efficacy and quality of experience (QoE) in human-computer interaction. The various modalities that constribute to such systems each provide a specific uni-modal response that is integratively presented as a multi-modal interface capable of interpretation of multi-modal user input and appropriately responding to it through dynamically adapted multi-modal interactive flow management , This paper presents an initial background study in the context of the first phase of a PhD research programme in the area of optimisation of data fusion techniques to serve multimodal interactivite systems, their applications and requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A unified approach is proposed for data modelling that includes supervised regression and classification applications as well as unsupervised probability density function estimation. The orthogonal-least-squares regression based on the leave-one-out test criteria is formulated within this unified data-modelling framework to construct sparse kernel models that generalise well. Examples from regression, classification and density estimation applications are used to illustrate the effectiveness of this generic data-modelling approach for constructing parsimonious kernel models with excellent generalisation capability. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a new fast, effective and practical model structure construction algorithm for a mixture of experts network system utilising only process data. The algorithm is based on a novel forward constrained regression procedure. Given a full set of the experts as potential model bases, the structure construction algorithm, formed on the forward constrained regression procedure, selects the most significant model base one by one so as to minimise the overall system approximation error at each iteration, while the gate parameters in the mixture of experts network system are accordingly adjusted so as to satisfy the convex constraints required in the derivation of the forward constrained regression procedure. The procedure continues until a proper system model is constructed that utilises some or all of the experts. A pruning algorithm of the consequent mixture of experts network system is also derived to generate an overall parsimonious construction algorithm. Numerical examples are provided to demonstrate the effectiveness of the new algorithms. The mixture of experts network framework can be applied to a wide variety of applications ranging from multiple model controller synthesis to multi-sensor data fusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new image data fusion scheme by combining median filtering with self-organizing feature map (SOFM) neural networks. The scheme consists of three steps: (1) pre-processing of the images, where weighted median filtering removes part of the noise components corrupting the image, (2) pixel clustering for each image using self-organizing feature map neural networks, and (3) fusion of the images obtained in Step (2), which suppresses the residual noise components and thus further improves the image quality. It proves that such a three-step combination offers an impressive effectiveness and performance improvement, which is confirmed by simulations involving three image sensors (each of which has a different noise structure).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principle aim of this research is to elucidate the factors driving the total rate of return of non-listed funds using a panel data analytical framework. In line with previous results, we find that core funds exhibit lower yet more stable returns than value-added and, in particular, opportunistic funds, both cross-sectionally and over time. After taking into account overall market exposure, as measured by weighted market returns, the excess returns of value-added and opportunity funds are likely to stem from: high leverage, high exposure to development, active asset management and investment in specialized property sectors. A random effects estimation of the panel data model largely confirms the findings obtained from the fixed effects model. Again, the country and sector property effect shows the strongest significance in explaining total returns. The stock market variable is negative which hints at switching effects between competing asset classes. For opportunity funds, on average, the returns attributable to gearing are three times higher than those for value added funds and over five times higher than for core funds. Overall, there is relatively strong evidence indicating that country and sector allocation, style, gearing and fund size combinations impact on the performance of unlisted real estate funds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and states and a simple C model. Participants were provided with the model and with both synthetic net ecosystem exchange (NEE) of CO2 and leaf area index (LAI) data, generated from the model with added noise, and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model parameters and states consistent with the model for all cases over the two years for which data were provided, and generate predictions for one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic data case, parameter estimates compared well with the true values. The results of the analyses indicated that parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration, were best constrained and characterised. Poorly estimated parameters were those related to the allocation to and turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several algorithms successfully located the true values of annual fluxes from synthetic experiments within relatively narrow 90% confidence intervals, achieving >80% success rate and mean NEE confidence intervals <110 gC m−2 year−1 for the synthetic case. Annual C flux estimates generated by participants generally agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when data were available. Confidence intervals on annual NEE increased by 30% when observed data were used instead of synthetic data, reflecting and quantifying the addition of model error. Finally, our analyses indicated that incorporating additional constraints, using data on C pools (wood, soil and fine roots) would help to reduce uncertainties for model parameters poorly served by eddy covariance data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we review the state-of-the-art techniques in mining data streams for mobile and ubiquitous environments. We start the review with a concise background of data stream processing, presenting the building blocks for mining data streams. In a wide range of applications, data streams are required to be processed on small ubiquitous devices like smartphones and sensor devices. Mobile and ubiquitous data mining target these applications with tailored techniques and approaches addressing scarcity of resources and mobility issues. Two categories can be identified for mobile and ubiquitous mining of streaming data: single-node and distributed. This survey will cover both categories. Mining mobile and ubiquitous data require algorithms with the ability to monitor and adapt the working conditions to the available computational resources. We identify the key characteristics of these algorithms and present illustrative applications. Distributed data stream mining in the mobile environment is then discussed, presenting the Pocket Data Mining framework. Mobility of users stimulates the adoption of context-awareness in this area of research. Context-awareness and collaboration are discussed in the Collaborative Data Stream Mining, where agents share knowledge to learn adaptive accurate models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reliable evidence of trends in the illegal ivory trade is important for informing decision making for elephants but it is difficult to obtain due to the covert nature of the trade. The Elephant Trade Information System, a global database of reported seizures of illegal ivory, holds the only extensive information on illicit trade available. However inherent biases in seizure data make it difficult to infer trends; countries differ in their ability to make and report seizures and these differences cannot be directly measured. We developed a new modelling framework to provide quantitative evidence on trends in the illegal ivory trade from seizures data. The framework used Bayesian hierarchical latent variable models to reduce bias in seizures data by identifying proxy variables that describe the variability in seizure and reporting rates between countries and over time. Models produced bias-adjusted smoothed estimates of relative trends in illegal ivory activity for raw and worked ivory in three weight classes. Activity is represented by two indicators describing the number of illegal ivory transactions--Transactions Index--and the total weight of illegal ivory transactions--Weights Index--at global, regional or national levels. Globally, activity was found to be rapidly increasing and at its highest level for 16 years, more than doubling from 2007 to 2011 and tripling from 1998 to 2011. Over 70% of the Transactions Index is from shipments of worked ivory weighing less than 10 kg and the rapid increase since 2007 is mainly due to increased consumption in China. Over 70% of the Weights Index is from shipments of raw ivory weighing at least 100 kg mainly moving from Central and East Africa to Southeast and East Asia. The results tie together recent findings on trends in poaching rates, declining populations and consumption and provide detailed evidence to inform international decision making on elephants.