191 resultados para dairy cow

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since estimated dietary selenium intake in the UK has declined steadily from around 60 mug day(-1) in 1975 to 34 mug day(-1) in 1997, there is a need to increase selenium intake from staple foods such as milk and milk products. An experiment was therefore done to investigate the relationship between dietary source and concentration of selenium and the selenium content of bovine milk. In a 3 x 3 factorial design, 90 mid-lactation Holstein dairy cows were supplemented over 8 weeks with either sodium selenite (S), a chelated selenium product (Selenium Metasolate(TM)) (C) or a selenium yeast (Sel-plex(TM)) (Y) at three different dietary inclusion levels of 0.38 (L), 0.76 (M) and 1.14 (H) mg kg(-1) dry matter (DM). Significant increases in milk selenium concentration were observed for all three sources with increasing inclusion level in the diet, but Y gave a much greater response (up to +65 mug l(-1)) than the other two sources of selenium (S and C up to +4 and +6 mug l(-1) respectively). The Y source also resulted in a substantially higher apparent efficiency of transfer of selenium from diet to milk than S or C. Feeding Y at the lowest dietary concentration, and thus within the maximum level permitted under EU regulations, resulted in milk with a selenium concentration of 28 mug l(-1). If the selenium concentration of milk in the UK was increased to this value, it would, at current consumption rates, provide an extra 8.7 mug selenium day(-1), or 11 and 14% of daily recommended national intake for men and women respectively. (C) 2004 Society of Chemical Industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A more complete understanding of amino acid ( AA) metabolism by the various tissues of the body is required to improve upon current systems for predicting the use of absorbed AA. The objective of this work was to construct and parameterize a model of net removal of AA by the portal-drained viscera (PDV). Six cows were prepared with arterial, portal, and hepatic catheters and infused abomasally with 0, 200, 400, or 600 g of casein daily. Casein infusion increased milk yield quadratically and tended to increase milk protein yield quadratically. Arterial concentrations of a number of essential AA increased linearly with respect to infusion amount. When infused casein was assumed to have a true digestion coefficient of 0.95, the minimum likely true digestion coefficient for noninfused duodenal protein was found to be 0.80. Net PDV use of AA appeared to be linearly related to total supply (arterial plus absorption), and extraction percentages ranged from 0.5 to 7.25% for essential AA. Prediction errors for portal vein AA concentrations ranged from 4 to 9% of the observed mean concentrations. Removal of AA by PDV represented approximately 33% of total postabsorptive catabolic use, including use during absorption but excluding use for milk protein synthesis, and was apparently adequate to support endogenous N losses in feces of 18.4 g/d. As 69% of this use was from arterial blood, increased PDV catabolism of AA in part represents increased absorption of AA in excess of amounts required by other body tissues. Based on the present model, increased anabolic use of AA in the mammary and other tissues would reduce the catabolic use of AA by the PDV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to construct a dynamic model of hepatic amino acid metabolism in the lactating dairy cow that could be parameterized using net flow data from in vivo experiments. The model considers 22 amino acids, ammonia, urea, and 13 energetic metabolites, and was parameterized using a steady-state balance model and two in vivo, net flow experiments conducted with mid-lactation dairy cows. Extracellular flows were derived directly from the observed data. An optimization routine was used to derive nine intracellular flows. The resulting dynamic model was found to be stable across a range of inputs suggesting that it can be perturbed and applied to other physiological states. Although nitrogen was generally in balance, leucine was in slight deficit compared to predicted needs for export protein synthesis, suggesting that an alternative source of leucine (e.g. peptides) was utilized. Simulations of varying glucagon concentrations indicated that an additional 5 mol/d of glucose could be synthesized at the reference substrate concentrations and blood flows. The increased glucose production was supported by increased removal from blood of lactate, glutamate, aspartate, alanine, asparagine, and glutamine. As glucose Output increased, ketone body and acetate release increased while CO2 release declined. The pattern of amino acids appearing in hepatic vein blood was affected by changes in amino acid concentration in portal vein blood, portal blood flow rate and glucagon concentration, with methionine and phenylalanine being the most affected of essential amino acids. Experimental evidence is insufficient to determine whether essential amino acids are affected by varying gluconeogenic demands. (C) 2004 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic parameters and breeding values for dairy cow fertility were estimated from 62 443 lactation records. Two-trait analysis of fertility and milk yield was investigated as a method to estimate fertility breeding values when culling or selection based on milk yield in early lactation determines presence or absence of fertility observations in later lactations. Fertility traits were calving interval, intervals from calving to first service, calving to conception and first to last service, conception success to first service and number of services per conception. Milk production traits were 305-day milk, fat and protein yield. For fertility traits, range of estimates of heritability (h(2)) was 0.012 to 0.028 and of permanent environmental variance (c(2)) was 0.016 to 0.032. Genetic correlations (r(g)) among fertility traits were generally high ( > 0.70). Genetic correlations of fertility with milk production traits were unfavourable (range -0.11 to 0.46). Single and two-trait analyses of fertility were compared using the same data set. The estimates of h(2) and c(2) were similar for two types of analyses. However, there were differences between estimated breeding values and rankings for the same trait from single versus multi-trait analyses. The range for rank correlation was 0.69-0.83 for all animals in the pedigree and 0.89-0.96 for sires with more than 25 daughters. As single-trait method is biased due to selection on milk yield, a multi-trait evaluation of fertility with milk yield is recommended. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tensile strength of 576 pieces of white line horn collected over 6 mo from 14 dairy cows restricted to parity 1 or 2 was tested. None of the cows had ever been lame. Seven cows were randomly assigned to receive 20 mg/d biotin supplementation, and 7 were not supplemented. Hoof horn samples were taken from zones 2 and 3 (the more proximal and distal sites of the abaxial white line) of the medial and lateral claws of both hind feet on d 1 and on 5 further occasions over 6 mo. The samples were analyzed at 100% water saturation. Hoof slivers were notched to ensure that tensile strength was measured specifically across the white line region. The tensile stress at failure was measured in MPa and was adjusted for the cross-sectional area of the notch site. Data were analyzed in a multilevel model, which accounted for the repeated measures within cows. All other variables were entered as fixed effects. In the final model, there was considerable variation in strength over time. Tensile strength was significantly higher in medial compared with lateral claws, and zone 2 was significantly stronger than zone 3. Where the white line was visibly damaged the tensile strength was low. Biotin supplementation did not affect the tensile strength of the white line. Results of this study indicate that damage to the white line impairs its tensile strength and that in horn with no visible abnormality the white line is weaker in the lateral hind claw than the medial and in zone 3 compared with zone 2. The biomechanical strength was lowest at zone 3 of the lateral hind claw, which is the most common site of white line disease lameness in cattle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dairy cow foot health is a subject of concern because it is considered to be the most important welfare problem in dairy farming and causes economic losses for the farmer. In order to improve dairy cow foot health it is important to take into account the attitude and intention of dairy farmers. In our study the objective was to gain insight into the attitude and intention of dairy farmers to take action to improve dairy cow foot health and determine drivers and barriers to take action, using the Theory of Planned Behavior. Five hundred Dutch dairy farmers were selected randomly and were invited by email to fill in an online questionnaire. The questionnaire included questions about respondents’ intentions, attitudes, subjective norms and perceived behavioral control and was extended with questions about personal normative beliefs. With information from such a framework, solution strategies for the improvement of dairy cow foot health can be proposed. The results showed that almost 70% of the dairy farmers had an intention to take action to improve dairy cow foot health. Most important drivers seem to be the achievement of better foot health with cost-effective measures. Possible barriers to taking action were labor efficiency and a long interval between taking action and seeing an improvement in dairy cow foot health. The feed advisor and foot trimmer seemed to have most influence on intentions to take action to improve dairy cow foot health. Most farmers seemed to be satisfied with the foot health status at their farm, which probably weakens the intention for foot health improvement, especially compared to other issues which farmers experience as more urgent. Subclinical foot disorders (where cows are not visibly lame) were not valued as important with respect to animal welfare. Furthermore, 25% of the respondents did not believe cows could suffer pain. Animal welfare, especially the provision of good care for the cows, was valued as important but was not related to intention to improve dairy cow foot health. The cost-effectiveness of measures seemed to be more important. Providing more information on the effects of taking intervention measures might stimulate farmers to take action to achieve improvement in dairy cow foot health.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Forty-multiparous Holstein cows were used in a 16-wk continuous design study to determine the effects of either selenium (Se) source, selenized yeast (SY) (derived from a specific strain of Saccharomyces cerevisiae CNCM I-3060 Sel-Plex®) or sodium selenite (SS), or inclusion rate of SY on Se concentration and speciation in blood, milk and cheese. Cows received ad libitum a TMR with 1:1 forage:concentrate ratio on a dry matter (DM) basis. There were four diets (T1-T4) which differed only in either source or dose of Se additive. Estimated total dietary Se for T1 (no supplement), T2 (SS), T3 (SY) and T4 (SY) was 0.16, 0.30, 0.30 and 0.45 mg/kg DM, respectively. Blood and milk samples were taken at 28 day intervals and at each time point there were positive linear effects of SY on Se concentration in blood and milk. At day 112 blood and milk Se values for T1-T4 were 177, 208, 248, 279 ± 6.6 and 24, 38, 57, 72 ± 3.7 ng/g fresh material, respectively and indicate improved uptake and incorporation of Se from SY. While selenocysteine (SeCys) was the main selenised amino acid in blood its concentration was not markedly affected by treatment, but the proportion of total Se as selenomethionine (SeMet) increased with increasing inclusion rate of SY. In milk, there were no marked treatment effects on SeCys content, but Se source had a marked effect on the proportion of total Se as SeMet. At day 112 replacing SS (T2) with SY (T3) increased the SeMet concentration of milk from 36 to 111 ng Se/g and its concentration increased further to 157 ng Se/g as the inclusion rate of SY increased further (T4) to provide 0.45 mg Se/kg TMR. Neither Se source nor inclusion rate effected the keeping quality of milk. At day 112, milk from T1, T2, and T3 was made into a hard cheese and Se source had a marked effect on total Se and the proportion of total Se comprised as either SeMet or SeCys. Replacing SS (T2) with SY (T3) increased total Se, SeMet and SeCys content from 180 to 340 ng Se/g, 57 to 153 ng Se/g and 52 to 92 ng Se/g, respectively. Key words: dairy cow, milk and cheese, selenomethionine, selenocysteine, milk keeping quality

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Grass-based diets are of increasing social-economic importance in dairy cattle farming, but their low supply of glucogenic nutrients may limit the production of milk. Current evaluation systems that assess the energy supply and requirements are based on metabolisable energy (ME) or net energy (NE). These systems do not consider the characteristics of the energy delivering nutrients. In contrast, mechanistic models take into account the site of digestion, the type of nutrient absorbed and the type of nutrient required for production of milk constituents, and may therefore give a better prediction of supply and requirement of nutrients. The objective of the present study is to compare the ability of three energy evaluation systems, viz. the Dutch NE system, the agricultural and food research council (AFRC) ME system, and the feed into milk (FIM) ME system, and of a mechanistic model based on Dijkstra et al. [Simulation of digestion in cattle fed sugar cane: prediction of nutrient supply for milk production with locally available supplements. J. Agric. Sci., Cambridge 127, 247-60] and Mills et al. [A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation and application. J. Anim. Sci. 79, 1584-97] to predict the feed value of grass-based diets for milk production. The dataset for evaluation consists of 41 treatments of grass-based diets (at least 0.75 g ryegrass/g diet on DM basis). For each model, the predicted energy or nutrient supply, based on observed intake, was compared with predicted requirement based on observed performance. Assessment of the error of energy or nutrient supply relative to requirement is made by calculation of mean square prediction error (MSPE) and by concordance correlation coefficient (CCC). All energy evaluation systems predicted energy requirement to be lower (6-11%) than energy supply. The root MSPE (expressed as a proportion of the supply) was lowest for the mechanistic model (0.061), followed by the Dutch NE system (0.082), FIM ME system (0.097) and AFRCME system(0.118). For the energy evaluation systems, the error due to overall bias of prediction dominated the MSPE, whereas for the mechanistic model, proportionally 0.76 of MSPE was due to random variation. CCC analysis confirmed the higher accuracy and precision of the mechanistic model compared with energy evaluation systems. The error of prediction was positively related to grass protein content for the Dutch NE system, and was also positively related to grass DMI level for all models. In conclusion, current energy evaluation systems overestimate energy supply relative to energy requirement on grass-based diets for dairy cattle. The mechanistic model predicted glucogenic nutrients to limit performance of dairy cattle on grass-based diets, and proved to be more accurate and precise than the energy systems. The mechanistic model could be improved by allowing glucose maintenance and utilization requirements parameters to be variable. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The current energy requirements system used in the United Kingdom for lactating dairy cows utilizes key parameters such as metabolizable energy intake (MEI) at maintenance (MEm), the efficiency of utilization of MEI for 1) maintenance, 2) milk production (k(l)), 3) growth (k(g)), and the efficiency of utilization of body stores for milk production (k(t)). Traditionally, these have been determined using linear regression methods to analyze energy balance data from calorimetry experiments. Many studies have highlighted a number of concerns over current energy feeding systems particularly in relation to these key parameters, and the linear models used for analyzing. Therefore, a database containing 652 dairy cow observations was assembled from calorimetry studies in the United Kingdom. Five functions for analyzing energy balance data were considered: straight line, two diminishing returns functions, (the Mitscherlich and the rectangular hyperbola), and two sigmoidal functions (the logistic and the Gompertz). Meta-analysis of the data was conducted to estimate k(g) and k(t). Values of 0.83 to 0.86 and 0.66 to 0.69 were obtained for k(g) and k(t) using all the functions (with standard errors of 0.028 and 0.027), respectively, which were considerably different from previous reports of 0.60 to 0.75 for k(g) and 0.82 to 0.84 for k(t). Using the estimated values of k(g) and k(t), the data were corrected to allow for body tissue changes. Based on the definition of k(l) as the derivative of the ratio of milk energy derived from MEI to MEI directed towards milk production, MEm and k(l) were determined. Meta-analysis of the pooled data showed that the average k(l) ranged from 0.50 to 0.58 and MEm ranged between 0.34 and 0.64 MJ/kg of BW0.75 per day. Although the constrained Mitscherlich fitted the data as good as the straight line, more observations at high energy intakes (above 2.4 MJ/kg of BW0.75 per day) are required to determine conclusively whether milk energy is related to MEI linearly or not.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Milk solids yield in modern dairy cows has increased linearly over the last 50 years, stressing the need for maximal dietary energy intake to allow genetic potential for milk energy yield to be realized with minimal negative effects on health and reproduction. Feeding supplemental starch is a common approach for increasing the energy density of the ration and supplying carbon for meeting the substantial glucose requirement of the higher yielding cow. In this regard, it is a long held belief that feeding starch in forms that increase digestion in the small intestine and glucose absorption will benefit the cow in terms of energetic efficiency and production response, but data supporting this dogma are equivocal. This review will consider the impact of supplemental starch and site of starch digestion on metabolic and production responses of lactating dairy cows, including effects on feed intake, milk yield and composition, nutrient partitioning, the capacity of the small intestine for starch digestion, and nutrient absorption and metabolism by the splanchnic tissues (the portal-drained viscera and liver). Whilst there appears to be considerable capacity for starch digestion and glucose absorption in the lactating dairy cow, numerous strategic studies implementing postruminal starch or glucose infusions have observed increases in milk yield, but decreased milk fat concentration such that there is little effect on milk energy yield, even in early lactation. Measurements of energy balance confirm that the majority of the supplemental energy arising from postruminal starch digestion is used with high efficiency to support body adipose and protein retention, even in early lactation. These responses may be mediated by changes in insulin status, and be beneficial to the cow in terms of reproductive success and well-being. However, shifting starch digestion from the rumen impacts the nitrogen economy of the cow as well by shifting the microbial protein gained from starch digestion from potentially absorbable protein to endogenous faecal loss.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

After parturition, the somatotropic axis of the dairy cow is uncoupled, partly because of reduced concentration of liver-specific GH receptor (GHR) 1A. Estradiol-17 beta (E-2) concentrations increase at parturition and E-2 upregulates suppressors of cytokine signaling-2 (SOCS-2) mRNA expression, potentially inhibiting GH signaling. Therefore, we hypothesized that SOCS-2 mRNA is upregulated after parturition. Multiparous Holstein cows (n = 18) were dried off 45 d before expected parturition and fed diets to meet nutrient requirements at ad libitum or limited dry matter intake during the dry period. All cows were fed the same diet ad libitum from calving until 4 wk after parturition. Blood samples were collected weekly and more frequently near parturition. Liver biopsies obtained at -21, -7, 2, and 28 d relative to parturition were assessed for SOCS-2 and GHR 1A mRNA by quantitative real-time reverse-transcription PCR. The relative amount of SOCS-2 mRNA increased after parturition with both treatments and was greater on d 2 for cows limit-fed during the dry period compared with cows fed at ad libitum dry matter intake. Plasma E2 concentrations increased on d -13, -5 and 1 relative to parturition and the increases were greater in limit-fed cows. Plasma GH concentration was greater for limit-fed cows and increased after parturition in all cows. The amount of GHR 1A mRNA did not differ between diets but decreased on d 2. In addition to reduced GHR 1A, increased SOCS-2 mRNA after parturition, perhaps because of increased E-2, may further uncouple GH signaling in the liver of the transition dairy cow.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Milk is a complex and complete food containing an array of essential nutrients that contribute toward a healthy, balanced diet. Numerous epidemiological studies have revealed that high consumption of milk and dairy products may have protective effects against coronary heart disease (CHD), stroke, diabetes, certain cancers (such as colorectal and bladder cancers), and dementia, although the mechanisms of action are unclear. Despite this epidemiological evidence, milk fatty acid profiles often lead to a negative perception of milk and dairy products. However, altering the fatty acid profile of milk by changing the dairy cow diet is a successful strategy, and intervention studies have shown that this approach may lead to further benefits of milk/dairy consumption. Overall, evidence suggests individuals who consume a greater amount of milk and dairy products have a slightly better health advantage than those who do not consume milk and dairy products.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The principal driver of nitrogen (N) losses from the body including excretion and secretion in milk is N intake. However, other covariates may also play a role in modifying the partitioning of N. This study tests the hypothesis that N partitioning in dairy cows is affected by energy and protein interactions. A database containing 470 dairy cow observations was collated from calorimetry experiments. The data include N and energy parameters of the diet and N utilization by the animal. Univariate and multivariate meta-analyses that considered both within and between study effects were conducted to generate prediction equations based on N intake alone or with an energy component. The univariate models showed that there was a strong positive linear relationships between N intake and N excretion in faeces, urine and milk. The slopes were 0.28 faeces N, 0.38 urine N and 0.20 milk N. Multivariate model analysis did not improve the fit. Metabolizable energy intake had a significant positive effect on the amount of milk N in proportion to faeces and urine N, which is also supported by other studies. Another measure of energy considered as a covariate to N intake was diet quality or metabolizability (the concentration of metabolizable energy relative to gross energy of the diet). Diet quality also had a positive linear relationship with the proportion of milk N relative to N excreted in faeces and urine. Metabolizability had the largest effect on faeces N due to lower protein digestibility of low quality diets. Urine N was also affected by diet quality and the magnitude of the effect was higher than for milk N. This research shows that including a measure of diet quality as a covariate with N intake in a model of N execration can enhance our understanding of the effects of diet composition on N losses from dairy cows. The new prediction equations developed in this study could be used to monitor N losses from dairy systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An isotope dilution model for partitioning phenylalanine uptake by the liver of the lactating dairy cow was constructed and solved in the steady state. If assumptions are made, model solution permits calculation of the rate of phenylalanine uptake from portal vein and hepatic arterial blood supply, phenylalanine release into the hepatic vein, phenylalanine oxidation and synthesis, and degradation of hepatic constitutive and export proteins. The model requires the measurement of plasma fow rate through the liver in combination with phenylalanine concentrations and plateau isotopic enrichments in arterial, portal and hepatic plasma during a constant infusion of [1-13C]phenylalanine tracer. The model can be applied to other amino acids with similar metabolic fates and will provide a means for assessing the impact of hepatic metabolism on amino acid availability to peripheral tissues. This is of particular importance for the dairy cow when considering the requirements for milk protein synthesis and the negative environmental impact of excessive nitrogen excretion.