4 resultados para cytokeratin

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the use of a laminin coated compressed collagen gel containing corneal fibroblasts (keratocytes) as a novel scaffold to support the growth of corneal limbal epithelial stem cells. The growth of limbal epithelial cells was compared between compressed collagen gel and a clinically proven conventional substrate, denuded amniotic membrane. Following compression of the collagen gel, encapsulated keratocytes remained viable and scanning electron microscopy showed that fibres within the compressed gel were dense, homogeneous and similar in structure to those within denuded amniotic membrane. Limbal epithelial cells were successfully expanded upon the compressed collagen resulting in stratified layers of cells containing desmosome and hemidesmosome structures. The resulting corneal constructs of both the groups shared a high degree of transparency, cell morphology and cell stratification. Similar protein expression profiles for cytokeratin 3 and cytokeratin 14 and no significant difference in cytokeratin 12 mRNA expression levels by real time PCR were also observed. This study provides the first line of evidence that a laminin coated compressed collagen gel containing keratocytes can adequately support limbal epithelial cell expansion, stratification and differentiation to a degree that is comparable to the leading conventional scaffold, denuded amniotic membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of Staphylococcus aureus to colonize the human nares is a crucial prerequisite for disease. IsdA is a major S. aureus surface protein that is expressed during human infection and required for nasal colonization and survival on human skin. In this work, we show that IsdA binds to involucrin, loricrin, and cytokeratin K10, proteins that are present in the cornified envelope of human desquamated epithelial cells. To measure the forces and dynamics of the interaction between IsdA and loricrin (the most abundant protein of the cornified envelope), single-molecule force spectroscopy was used, demonstrating high-specificity binding. IsdA acts as a cellular adhesin to the human ligands, promoting whole-cell binding to immobilized proteins, even in the absence of other S. aureus components (as shown by heterologous expression in Lactococcus lactis). Inhibition experiments revealed the binding of the human ligands to the same IsdA region. This region was mapped to the NEAT domain of IsdA. The NEAT domain also was found to be required for S. aureus whole-cell binding to the ligands as well as to human nasal cells. Thus, IsdA is an important adhesin to human ligands, which predominate in its primary ecological niche.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The experiments were designed to use photochemically cross-linked plastically compressed collagen (PCPCC) gel to support corneal epithelial cells. A plastically compressed collagen (PCC) scaffold was photo cross-linked by UVA in the presence of riboflavin to form a biomaterial with optimal mechanical properties. The breaking force, rheology, surgical suture strength, transparency, ultrastructure, and cell-based biocompatibility were compared between PCPCC and PCC gels. The breaking force increased proportionally with an increased concentration of riboflavin. The stress required to reach breaking point of the PCPCC scaffolds was over two times higher compared to the stress necessary to break PCC scaffolds in the presence of 0.1% riboflavin. Rheology results indicated that the structural properties of PCC remain unaltered after UVA cross-linking. The PCC gels were more easily broken than PCPCC gels when sutured on to bovine corneas. The optical density values of PCPCC and PCC showed no significant differences (p > 0.05). SEM analyses showed that the collagen fibres within the PCPCC gels were similar in morphology to PCC gels. No difference in cell-based biocompatibility was seen between the PCPCC and PCC scaffolds in terms of their ability to support the ex vivo expansion of corneal epithelial cells or their subsequent differentiation evidenced by similar levels of cytokeratin 14. In conclusion, PCPCC scaffold is an optimal biomaterial for use in therapeutic tissue engineering of the cornea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Limbal epithelial stem cells play a key role in the maintenance and regulation of the corneal surface. Damage or destruction of these cells results in vascularisation and corneal opacity. Subsequent limbal stem cell transplantation requires an ex vivo expansion step and preserving cells in an undifferentiated state remains vital. In this report we seek to control the phenotype of limbal epithelial stem cells by the novel application of compressed collagen substrates. We have characterised the mechanical and surface properties of conventional collagen gels using shear rheology and scanning electron microscopy. In doing so, we provide evidence to show that compressive load can improve the stiffness of collagen substrates. In addition Western blotting and immunohistochemistry display increased cytokeratin 3 (CK3) protein expression relating to limbal epithelial cell differentiation on stiff collagen substrates. Such gels with an elastic modulus of 2900 Pa supported a significantly higher number of cells than less stiff collagen gels (3 Pa). These findings have substantial influence in the development of ocular surface constructs or experimental models particularly in the fields of stem cell research, tissue engineering and regenerative medicine.