7 resultados para cystic echinococcosis.
em CentAUR: Central Archive University of Reading - UK
Resumo:
Gross cystic breast disease (GCBD) is the most common benign breast disorder, but the molecular basis of cyst formation remains to be identified. If the use of aluminium-based antiperspirant salts is involved in the etiology of gross breast cyst formation, it might be expected that aluminium would be at elevated levels in human breast cyst fluid (BCF). Aluminium was measured by ICP-MS in 48 samples of BCF, 30 samples of human blood serum and 45 samples of human breast milk at different stages of lactation (colostrum, intermediate, mature). The median level of aluminium in apocrine type I BCF (n:= 27, 150 mu g I-1) was significantly higher than in transuclative type II BCF (n = 21, 32 mu g I-1; P < 0.0001). By comparison, aluminium measurements gave a median concentration of 6 mu g I-1 in human serum and 25 mu g I-1 in human breast milk, with no difference between colostrum, intermediate and mature milk. Levels of aluminium were significantly higher in both types of BCF than in human serum (P < 0.0001). However when compared with human breast milk, aluminium levels were only significantly higher in apocrine type I BCF (P < 0.0001) and not in transudative type II BCF (P = 0.152). It remains to be identified why such high levels of aluminium were found in the apocrine type I BCF and from where the aluminium originated. However, if aluminium-based antiperspirants are found to be the source and to play any causal role in development of breast cysts, then it might become possible to prevent this common breast disorder. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Whilst not true in all cases, the microbial communities that chronically infect the airways of patients with CF can vary little over a year despite antibiotic perturbation. The species present tended to vary more between than within subjects, suggesting that each CF airway infection is unique, with relatively stable and resilient bacterial communities. The inverse relationship between community richness and disease severity is similar to findings reported in other mucosal infections.
Resumo:
These findings strongly suggest that CFPE do not generally result from increased bacterial density within the airways. Instead, data presented here are consistent with alternative models of pulmonary exacerbation.
Resumo:
The aim of this study was to determine whether geographical differences impact the composition of bacterial communities present in the airways of cystic fibrosis (CF) patients attending CF centers in the United States or United Kingdom. Thirty-eight patients were matched on the basis of clinical parameters into 19 pairs comprised of one U.S. and one United Kingdom patient. Analysis was performed to determine what, if any, bacterial correlates could be identified. Two culture-independent strategies were used: terminal restriction fragment length polymorphism (T-RFLP) profiling and 16S rRNA clone sequencing. Overall, 73 different terminal restriction fragment lengths were detected, ranging from 2 to 10 for U.S. and 2 to 15 for United Kingdom patients. The statistical analysis of T-RFLP data indicated that patient pairing was successful and revealed substantial transatlantic similarities in the bacterial communities. A small number of bands was present in the vast majority of patients in both locations, indicating that these are species common to the CF lung. Clone sequence analysis also revealed that a number of species not traditionally associated with the CF lung were present in both sample groups. The species number per sample was similar, but differences in species presence were observed between sample groups. Cluster analysis revealed geographical differences in bacterial presence and relative species abundance. Overall, the U.S. samples showed tighter clustering with each other compared to that of United Kingdom samples, which may reflect the lower diversity detected in the U.S. sample group. The impact of cross-infection and biogeography is considered, and the implications for treating CF lung infections also are discussed.
Resumo:
Pseudomonas aeruginosa, a major lung pathogen in cystic fibrosis (CF) patients, secretes an elastolytic metalloproteinase (EPa) contributing to bacterial pathogenicity. Proteinase-activated receptor 2 (PAR2), implicated in the pulmonary innate defense, is activated by the cleavage of its extracellular N-terminal domain, unmasking a new N-terminal sequence starting with SLIGKV, which binds intramolecularly and activates PAR2. We show that EPa cleaves the N-terminal domain of PAR2 from the cell surface without triggering receptor endocytosis as trypsin does. As evaluated by measurements of cytosolic calcium as well as prostaglandin E(2) and interleukin-8 production, this cleavage does not activate PAR2, but rather disarms the receptor for subsequent activation by trypsin, but not by the synthetic receptor-activating peptide, SLIGKV-NH(2). Proteolysis by EPa of synthetic peptides representing the N-terminal cleavage/activation sequences of either human or rat PAR2 indicates that cleavages resulting from EPa activity would not produce receptor-activating tethered ligands, but would disarm PAR2 in regard to any further activating proteolysis by activating proteinases. Our data indicate that a pathogen-derived proteinase like EPa can potentially silence the function of PAR2 in the respiratory tract, thereby altering the host innate defense mechanisms and respiratory functions, and thus contributing to pathogenesis in the setting of a disease like CF.
Resumo:
The human population is exposed to aluminium (Al) from diet, antacids and vaccine adjuvants, but frequent application of Al-based salts to the underarm as antiperspirant adds a high additional exposure directly to the local area of the human breast. Coincidentally the upper outer quadrant of the breast is where there is also a disproportionately high incidence of breast cysts and breast cancer. Al has been measured in human breast tissues/fluids at higher levels than in blood, and experimental evidence suggests that at physiologically relevant concentrations, Al can adversely impact on human breast epithelial cell biology. Gross cystic breast disease is the most common benign disorder of the breast and evidence is presented that Al may be a causative factor in formation of breast cysts. Evidence is also reviewed that Al can enable the development of multiple hallmarks associated with cancer in breast cells, in particular that it can cause genomic instability and inappropriate proliferation in human breast epithelial cells, and can increase migration and invasion of human breast cancer cells. In addition, Al is a metalloestrogen and oestrogen is a risk factor for breast cancer known to influence multiple hallmarks. The microenvironment is established as another determinant of breast cancer development and Al has been shown to cause adverse alterations to the breast microenvironment. If current useage patterns of Al-based antiperspirant salts contribute to causation of breast cysts and breast cancer, then reduction in exposure would offer a strategy for prevention, and regulatory review is now justified.