58 resultados para cyclic AMP-dependent protein kinase

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Firing of action potentials in excitable cells accelerates ATP turnover. The voltage-gated potassium channel Kv2.1 regulates action potential frequency in central neurons, whereas the ubiquitous cellular energy sensor AMP-activated protein kinase (AMPK) is activated by ATP depletion and protects cells by switching off energy-consuming processes. We show that treatment of HEK293 cells expressing Kv2.1 with the AMPK activator A-769662 caused hyperpolarizing shifts in the current-voltage relationship for channel activation and inactivation. We identified two sites (S440 and S537) directly phosphorylated on Kv2.1 by AMPK and, using phosphospecific antibodies and quantitative mass spectrometry, show that phosphorylation of both sites increased in A-769662-treated cells. Effects of A-769662 were abolished in cells expressing Kv2.1 with S440A but not with S537A substitutions, suggesting that phosphorylation of S440 was responsible for these effects. Identical shifts in voltage gating were observed after introducing into cells, via the patch pipette, recombinant AMPK rendered active but phosphatase-resistant by thiophosphorylation. Ionomycin caused changes in Kv2.1 gating very similar to those caused by A-769662 but acted via a different mechanism involving Kv2.1 dephosphorylation. In cultured rat hippocampal neurons, A-769662 caused hyperpolarizing shifts in voltage gating similar to those in HEK293 cells, effects that were abolished by intracellular dialysis with Kv2.1 antibodies. When active thiophosphorylated AMPK was introduced into cultured neurons via the patch pipette, a progressive, time-dependent decrease in the frequency of evoked action potentials was observed. Our results suggest that activation of AMPK in neurons during conditions of metabolic stress exerts a protective role by reducing neuronal excitability and thus conserving energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Translationally controlled tumour protein (TCTP) is a highly conserved protein present in all eukaryotic organisms. Various cellular functions and molecular interactions have been ascribed to this protein, many related to its growth-promoting and antiapoptotic properties. TCTP levels are highly regulated in response to various cellular stimuli and stresses. We have shown recently that the double-stranded RNA-dependent protein kinase, PKR, is involved in translational regulation of TCTP. Here we extend these studies by demonstrating that TCTP is downregulated in response to various proapoptotic treatments, in particular agents that induce Ca++ stress, in a PKR-dependent manner. This regulation requires phosphorylation of protein synthesis factor eIF2α. Since TCTP has been characterized as an antiapoptotic and Ca++-binding protein, we asked whether it is involved in protecting cells from Ca++-stress-induced apoptosis. Overexpression of TCTP partially protects cells against thapsigargin-induced apoptosis, as measured using caspase-3 activation assays, a nuclear fragmentation assay, using fluorescence-activated cell sorting analysis, and time-lapse video microscopy. TCTP also protects cells against the proapoptotic effects of tunicamycin and etoposide, but not against those of arsenite. Our results imply that cellular TCTP levels influence sensitivity to apoptosis and that PKR may exert its proapoptotic effects at least in part through downregulation of TCTP via eIF2α phosphorylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) infection is associated with dysregulation of both lipid and glucose metabolism. As well as contributing to viral replication, these perturbations influence the pathogenesis associated with the virus, including steatosis, insulin resistance, and type 2 diabetes. AMP-activated protein kinase (AMPK) plays a key role in regulation of both lipid and glucose metabolism. We show here that, in cells either infected with HCV or harboring an HCV subgenomic replicon, phosphorylation of AMPK at threonine 172 and concomitant AMPK activity are dramatically reduced. We demonstrate that this effect is mediated by activation of the serine/threonine kinase, protein kinase B, which inhibits AMPK by phosphorylating serine 485. The physiological significance of this inhibition is demonstrated by the observation that pharmacological restoration of AMPK activity not only abrogates the lipid accumulation observed in virus-infected and subgenomic replicon-harboring cells but also efficiently inhibits viral replication. These data demonstrate that inhibition of AMPK is required for HCV replication and that the restoration of AMPK activity may present a target for much needed anti-HCV therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies in non-cardiomyocytic cells have shown that phosphorylation of the Bcl-2 family protein Bad on Ser-112, Ser-136 and Ser-155 decreases its pro-apoptotic activity. Both phenylephrine (100 microM) and the cell membrane-permeating cAMP analog, 8-(4-chlorophenylthio)-cAMP (100 microM), protected against 2-deoxy-D-glucose-induced apoptosis in neonatal rat cardiac myocytes as assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). In cardiac myocytes, phenylephrine primarily stimulates the alpha-adrenoceptor, but, at high concentrations (100 microM), it also increases the activity of the cAMP-dependent protein kinase, protein kinase A (PKA) through the beta-adrenoceptor. Phenylephrine (100 microM) promoted rapid phosphorylation of Bad(Ser-112) and Bad(Ser-155), though we were unable to detect phosphorylation of Bad(Ser-136). Phosphorylation of Bad(Ser-112) was antagonized by either prazosin or propranolol, indicating that this phosphorylation required stimulation of both alpha(1)- and beta-adrenoceptors. Phosphorylation of Bad(Ser-155) was antagonized only by propranolol and was thus mediated through the beta-adrenoceptor. Inhibitor studies and partial purification of candidate kinases by fast protein liquid chromatography showed that the p90 ribosomal S6 kinases, p90RSK2/3 [which are activated by the extracellular signal-regulated kinases 1 and 2 (ERK1/2)] directly phosphorylated Bad(Ser-112), whereas the PKA catalytic subunit directly phosphorylated Bad(Ser-155). However, efficient phosphorylation of Bad(Ser-112) also required PKA activity. These data suggest that, although p90RSK2/3 phosphorylate Bad(Ser-112) directly, phosphorylation of this site is enhanced by phosphorylation of Bad(Ser-155). These phosphorylations potentially diminish the pro-apoptotic activity of Bad and contribute to the cytoprotective effects of phenylephrine and 8-(4-chlorophenylthio)-cAMP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heme oxygenase-1 (HO-1), an inducible enzyme up-regulated in Alzheimer‟s disease (AD), catabolises heme to biliverdin, Fe2+ and carbon monoxide (CO). CO can protect neurones from oxidative stress-induced apoptosis by inhibiting Kv2.1 channels, which mediate cellular K+ efflux as an early step in the apoptotic cascade. Since apoptosis contributes to the neuronal loss associated with amyloid β peptide (Aβ) toxicity in AD, we investigated the protective effects of HO-1 and CO against Aβ1-42 toxicity in SH-SY5Y cells, employing cells stably transfected with empty vector or expressing the cellular prion protein, PrPc, and rat primary hippocampal neurons. Aβ1-42 (containing protofibrils) caused a concentrationdependent decrease in cell viability, attributable at least in part to induction of apoptosis, with the PrPc expressing cells showing greater susceptibility to Aβ1-42 toxicity. Pharmacological induction or genetic over-expression of HO-1 significantly ameliorated the effects of Aβ1-42. The CO-donor CORM-2 protected cells against Aβ1-42 toxicity in a concentration-dependent manner. Electrophysiological studies revealed no differences in the outward current pre- and post-Aβ1-42 treatment suggesting that K+ channel activity is unaffected in these cells. Instead, Aβ toxicity was reduced by the L-type Ca2+ channel blocker nifedipine, and by the CaMKKII inhibitor, STO-609. Aβ also activated the downstream kinase, AMP-dependent protein kinase (AMPK). CO prevented this activation of AMPK. Our findings indicate that HO-1 protects against Aβ toxicity via production of CO. Protection does not arise from inhibition of apoptosis-associated K+ efflux, but rather by inhibition of AMPK activation, which has been recently implicated in the toxic effects of Aβ. These data provide a novel, beneficial effect of CO which adds to its growing potential as a therapeutic agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emerging evidence suggests that the cellular actions of flavonoids relate not simply to their antioxidant potential but also to the modulation of protein kinase signalling pathways. We investigated in primary cortical neurons, the ability of the flavan-3-ol, (-)epicatechin, and its human metabolites at physiologically relevant concentrations, to stimulate phosphorylation of the transcription factor cAMP-response element binding protein (CREB), a regulator of neuronal viability and synaptic plasticity. (-)Epicatechin at 100-300 nmol/L stimulated a rapid, extracellular signal-regulated kinase (ERK)- and PI3K-dependent, increase in CREB phosphorylation. At micromolar concentrations, stimulation was no longer apparent and at the highest concentration tested (30 mu mol/L) (-)epicatechin was inhibitory. (-)Epicatechin also stimulated ERK and Akt phosphorylation with similar bell-shaped concentration-response characteristics. The human metabolite 3 '-O-methyl-(-)epicatechin was as effective as (-)epicatechin at stimulating ERK phosphorylation, but (-)epicatechin glucuronide was inactive. (-)Epicatechin and 3 '-O-methyl-(-)epicatechin treatments (100 nmol/L) increased CRE-luciferase activity in cortical neurons in a partially ERK-dependent manner, suggesting the potential to increase CREB-mediated gene expression. mRNA levels of the glutamate receptor subunit GluR2 increased by 60%, measured 18 h after a 15 min exposure to (-)epicatechin and this translated into an increase in GluR2 protein. Thus, (-)epicatechin has the potential to increase CREB-regulated gene expression and increase GluR2 levels and thus modulate neurotransmission, plasticity and synaptogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteases that are released during inflammation and injury cleave protease-activated receptor 2 (PAR2) on primary afferent neurons to cause neurogenic inflammation and hyperalgesia. PAR2-induced thermal hyperalgesia depends on sensitization of transient receptor potential vanilloid receptor 1 (TRPV1), which is gated by capsaicin, protons and noxious heat. However, the signalling mechanisms by which PAR2 sensitizes TRPV1 are not fully characterized. Using immunofluorescence and confocal microscopy, we observed that PAR2 was colocalized with protein kinase (PK) Cepsilon and PKA in a subset of dorsal root ganglia neurons in rats, and that PAR2 agonists promoted translocation of PKCepsilon and PKA catalytic subunits from the cytosol to the plasma membrane of cultured neurons and HEK 293 cells. Subcellular fractionation and Western blotting confirmed this redistribution of kinases, which is indicative of activation. Although PAR2 couples to phospholipase Cbeta, leading to stimulation of PKC, we also observed that PAR2 agonists increased cAMP generation in neurons and HEK 293 cells, which would activate PKA. PAR2 agonists enhanced capsaicin-stimulated increases in [Ca2+]i and whole-cell currents in HEK 293 cells, indicating TRPV1 sensitization. The combined intraplantar injection of non-algesic doses of PAR2 agonist and capsaicin decreased the latency of paw withdrawal to radiant heat in mice, indicative of thermal hyperalgesia. Antagonists of PKCepsilon and PKA prevented sensitization of TRPV1 Ca2+ signals and currents in HEK 293 cells, and suppressed thermal hyperalgesia in mice. Thus, PAR2 activates PKCepsilon and PKA in sensory neurons, and thereby sensitizes TRPV1 to cause thermal hyperalgesia. These mechanisms may underlie inflammatory pain, where multiple proteases are generated and released.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenylephrine and noradrenaline (alpha-adrenergic agonism) or isoprenaline (beta-adrenergic agonism) stimulated protein synthesis rates, increased the activity of the atrial natriuretic factor gene promoter and activated mitogen-activated protein kinase (MAPK). The EC50 for MAPK activation by noradrenaline was 2-4 microM and that for isoprenaline was 0.2-0.3 microM. Maximal activation of MAPK by isoprenaline was inhibited by the beta-adrenergic antagonist, propranolol, whereas the activation by noradrenaline was inhibited by the alpha1-adrenergic antagonist, prazosin. FPLC on a Mono-Q column separated two peaks of MAPK (p42MAPK and p44MAPK) and two peaks of MAPK-activating activity (MEK) activated by isoprenaline or noradrenaline. Prolonged phorbol ester exposure partially down-regulated the activation of MAPK by noradrenaline but not by isoprenaline. This implies a role for protein kinase C in MAPK activation by noradrenaline but not isoprenaline. A role for cyclic AMP in activation of the MAPK pathway was eliminated when other agonists that elevate cyclic AMP in the cardiac myocyte did not activate MAPK. In contrast, MAPK was activated by exposure to ionomycin, Bay K8644 or thapsigargin that elevate intracellular Ca2+. Furthermore, depletion of extracellular Ca2+ concentrations with bis-(o-aminophenoxy)ethane-NNN'N'-tetra-acetic acid (BAPTA) or blocking of the L-type Ca2+ channel with nifepidine or verapamil inhibited the response to isoprenaline without inhibiting the responses to noradrenaline. We conclude that alpha- and beta-adrenergic agonists can activate the MEK/MAPK pathway in the heart by different signalling pathways. Elevation of intracellular Ca2+ rather than cyclic AMP appears important in the activation of MAPK by isoprenaline in the cardiac myocyte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nontumorigenic, immortal line of murine melanocytes, Mel-ab, requires the continual presence of biologically active phorbol esters for growth (R. E. Wilson et al., Cancer Res., 49: 711–716, 1989). Comparable treatments of B16 murine melanoma cells result in partial inhibition of cell proliferation. The role of protein kinase C (PKC) in the modulation of growth of cells from these two melanocytic cell lines has been investigated. Significant levels of PKC were present in quiescent Mel-ab cells as determined by Western blotting, whereas no immunoreactive protein was detected in cell extracts from either proliferating Mel-ab or B16.F1 cells. Phosphorylation of a Mr 80,000 protein, which by one- and two-dimensional gel analysis comigrated with the known Mr 80,000 protein substrate of PKC in fibroblasts, was induced in 12-O-tetradecanoylphorbol-13-acetate-stimulated quiescent Mel-ab cells but not in proliferating Mel-ab cells or B16.F1 melanoma cells. Direct measurement of PKC activity in these cells demonstrated a 10-fold greater level of activity in quiescent Mel-ab cells (262 ± 50 pmol/min/mg SD) compared with growing cells (22.8 ± 11.8 pmol/min/mg SD). An intermediate level of activity was detected in proliferating B16.F1 melanoma cells (148.5 ± 20.4 pmol/min/mg SD). The subcellular distribution of PKC was dependent upon the growth state of the cells such that quiescent Mel-ab cells displayed a higher level of activity in the cytosol, whereas growing Melab cells displayed greater activity in the particulate fraction. Like many other transformed lines, B16.F1 melanoma cells constitutively expressed the majority of enzyme activity in the particulate fraction. Measurement of [3H]phorbol ester binding in intact cells paralleled the PKC activation data such that quiescent Mel-ab cells displayed binding of 1612 ± 147 cpm/106 cells, whereas proliferating Mel-ab and B16.F1 melanoma cells displayed binding of 652 ± 28 and 947 ± 81 cpm/106 cells, respectively. Membrane-permeant diacylglycerol analogues, which activated but did not down-regulate PKC, were devoid of growth-stimulating effects on melanocytes, even in the presence of the specific diacylglycerol kinase inhibitor, R59022. Together, these data show that PKC down-regulation, and not activation, correlates with the growth of melanocytes in culture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sapintoxin A (SAP A) and 12-deoxyphorbol 13-phenylacetate (DOPP), are two biologically active but non-turnour-promoting phorbol esters that potently bind to and activate the phorbol ester receptor, protein kinase C (PKC). SAP A and DOPP cause a dose-dependent increase in the phosphorylation of an 80 kd (80K) substrate protein for PKC in Swiss 3T3 cells. A similar dose—response effect was seen with sapintoxin D (SAP D), the stage 2 promoting analogue of 12-O-tetradecanoylphorbol-13-acetate and the complete promoter phorbol 12,13-dibutyrate (PDB). The doses resulting in a half maximal phosphorylation of this protein (Ka were 20 nM (SAP A), 45 nM (DOPP), 23 nM (SAP D) and 37 nM (PDB). Both non-promoting and phorbol esters induced a dose-dependent inhibition of [125I]epidermal growth factor (EGF) binding to its receptor in Swiss 3T3 cells. The doses required for 50% inhibition of binding (Ki) were: 8 nM (SAP A), 16 nM (DOPP), 14 nM (SAP D) and 17 nM (PDB). The results clearly demonstrate that induction of phosphorylation of the Pu 80K phosphoprotein and inhibition of [125I]EGF binding in Swiss 3T3 cells following exposure to phorbol esters is independent of the tumour-promoting activity of these compounds. The fact that SAP A, DOPP, SAP D and PDB are mitogenic for a variety of cell types and that exposure to these compounds leads to 80K phosphorylation and inhibition of [125I]EGF binding, suggests that these early biological events may play a role in the mitogenic response induced by these compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphoinositide 3-kinase (PI3K) is a critical component of the signaling pathways that control the activation of platelets. Here we have examined the regulation of protein kinase B (PKB), a downstream effector of PI3K, by the platelet collagen receptor glycoprotein (GP) VI and thrombin receptors. Stimulation of platelets with collagen or convulxin (a selective GPVI agonist) resulted in PI3K-dependent, and aggregation independent, Ser(473) and Thr(308) phosphorylation of PKBalpha, which results in PKB activation. This was accompanied by translocation of PKB to cell membranes. The phosphoinositide-dependent kinase PDK1 is known to phosphorylate PKBalpha on Thr(308), although the identity of the kinase responsible for Ser(473) phosphorylation is less clear. One candidate that has been implicated as being responsible for Ser(473) phosphorylation, either directly or indirectly, is the integrin-linked kinase (ILK). In this study we have examined the interactions of PKB, PDK1, and ILK in resting and stimulated platelets. We demonstrate that in platelets PKB is physically associated with PDK1 and ILK. Furthermore, the association of PDK1 and ILK increases upon platelet stimulation. It would therefore appear that formation of a tertiary complex between PDK1, ILK, and PKB may be necessary for phosphorylation of PKB. These observations indicate that PKB participates in cell signaling downstream of the platelet collagen receptor GPVI. The role of PKB in collagen- and thrombin-stimulated platelets remains to be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serine proteases generated during injury and inflammation cleave protease-activated receptor 2 (PAR(2)) on primary sensory neurons to induce neurogenic inflammation and hyperalgesia. Hyperalgesia requires sensitization of transient receptor potential vanilloid (TRPV) ion channels by mechanisms involving phospholipase C and protein kinase C (PKC). The protein kinase D (PKD) serine/threonine kinases are activated by diacylglycerol and PKCs and can phosphorylate TRPV1. Thus, PKDs may participate in novel signal transduction pathways triggered by serine proteases during inflammation and pain. However, it is not known whether PAR(2) activates PKD, and the expression of PKD isoforms by nociceptive neurons is poorly characterized. By using HEK293 cells transfected with PKDs, we found that PAR(2) stimulation promoted plasma membrane translocation and phosphorylation of PKD1, PKD2, and PKD3, indicating activation. This effect was partially dependent on PKCepsilon. By immunofluorescence and confocal microscopy, with antibodies against PKD1/PKD2 and PKD3 and neuronal markers, we found that PKDs were expressed in rat and mouse dorsal root ganglia (DRG) neurons, including nociceptive neurons that expressed TRPV1, PAR(2), and neuropeptides. PAR(2) agonist induced phosphorylation of PKD in cultured DRG neurons, indicating PKD activation. Intraplantar injection of PAR(2) agonist also caused phosphorylation of PKD in neurons of lumbar DRG, confirming activation in vivo. Thus, PKD1, PKD2, and PKD3 are expressed in primary sensory neurons that mediate neurogenic inflammation and pain transmission, and PAR(2) agonists activate PKDs in HEK293 cells and DRG neurons in culture and in intact animals. PKD may be a novel component of a signal transduction pathway for protease-induced activation of nociceptive neurons and an important new target for antiinflammatory and analgesic therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. Protein kinases are potential therapeutic targets for heart failure, but most studies of cardiac protein kinases derive from other systems, an approach that fails to account for specific kinases expressed in the heart and the contractile cardiomyocytes. We aimed to define the cardiomyocyte kinome (i.e. the protein kinases expressed in cardiomyocytes) and identify kinases with altered expression in human failing hearts. Methods and Results. Expression profiling (Affymetrix microarrays) detected >400 protein kinase mRNAs in rat neonatal ventricular myocytes (NVMs) and/or adult ventricular myocytes (AVMs), 32 and 93 of which were significantly upregulated or downregulated (>2-fold), respectively, in AVMs. Data for AGC family members were validated by qPCR. Proteomics analysis identified >180 cardiomyocyte protein kinases, with high relative expression of mitogen-activated protein kinase cascades and other known cardiomyocyte kinases (e.g. CAMKs, cAMP-dependent protein kinase). Other kinases are poorly-investigated (e.g. Slk, Stk24, Oxsr1). Expression of Akt1/2/3, BRaf, ERK1/2, Map2k1, Map3k8, Map4k4, MST1/3, p38-MAPK, PKCδ, Pkn2, Ripk1/2, Tnni3k and Zak was confirmed by immunoblotting. Relative to total protein, Map3k8 and Tnni3k were upregulated in AVMs vs NVMs. Microarray data for human hearts demonstrated variation in kinome expression that may influence responses to kinase inhibitor therapies. Furthermore, some kinases were upregulated (e.g. NRK, JAK2, STK38L) or downregulated (e.g. MAP2K1, IRAK1, STK40) in human failing hearts. Conclusions. This characterization of the spectrum of kinases expressed in cardiomyocytes and the heart (cardiomyocyte and cardiac kinomes) identified novel kinases, some of which are differentially expressed in failing human hearts and could serve as potential therapeutic targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stimulation of phosphatidylinositol 3'-kinase (PI3K) and protein kinase B (PKB) is implicated in the regulation of protein synthesis in various cells. One mechanism involves PI3K/PKB-dependent phosphorylation of 4E-BP1, which dissociates from eIF4E, allowing initiation of translation from the 7-methylGTP cap of mRNAs. We examined the effects of insulin and H(2)O(2) on this pathway in neonatal cardiac myocytes. Cardiac myocyte protein synthesis was increased by insulin, but was inhibited by H(2)O(2). PI3K inhibitors attenuated basal levels of protein synthesis and inhibited the insulin-induced increase in protein synthesis. Insulin or H(2)O(2) increased the phosphorylation (activation) of PKB through PI3K, but, whereas insulin induced a sustained response, the response to H(2)O(2) was transient. 4E-BP1 was phosphorylated in unstimulated cells, and 4E-BP1 phosphorylation was increased by insulin. H(2)O(2) stimulated dephosphorylation of 4E-BP1 by increasing protein phosphatase (PP1/PP2A) activity. This increased the association of 4E-BP1 with eIF4E, consistent with H(2)O(2) inhibition of protein synthesis. The effects of H(2)O(2) were sufficient to override the stimulation of protein synthesis and 4E-BP1 phosphorylation induced by insulin. These results indicate that PI3K and PKB are important regulators of protein synthesis in cardiac myocytes, but other factors, including phosphatase activity, modulate the overall response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apoptosis induced by the death-inducing ligand FasL (CD95L) is a major mechanism of cell death. Trophoblast cells express the Fas receptor yet survive in an environment that is rich in the ligand. We report that basal nitric oxide (NO) production is responsible for the resistance of trophoblasts to FasL-induced apoptosis. In this study we demonstrate that basal NO production resulted in the inhibition of receptor clustering following ligand binding. In addition NO also protected cells through the selective nitrosylation, and inhibition, of protein kinase Cepsilon (PKCepsilon) but not PKCalpha. In the absence of NO production PKCepsilon interacted with, and phosphorylated, the anti-apoptotic protein cFLIP. The interaction is predominantly with the short form of cFLIP and its phosphorylation reduces its recruitment to the death-inducing signaling complex (DISC) that is formed following binding of a death-inducing ligand to its receptor. Inhibition of cFLIP recruitment to the DISC leads to increased activation of caspase 8 and subsequently to apoptosis. Inhibition of PKCepsilon using siRNA significantly reversed the sensitivity to apoptosis induced by inhibition of NO synthesis suggesting that NO-mediated inhibition of PKCepsilon plays an important role in the regulation of Fas-induced apoptosis.