21 resultados para cyanide electrooxidation

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microwave spectra of CHD2CN and CHD2NC have been measured from 18 to 40 GHz; about 20 type A and 30 type C transitions have been observed for each molecule. These have been fitted to a Hamiltonian using 3 rotational constants, and 5 quartic and 4 sextic distortion constants, in the IrS reduction of Watson [in “Vibrational spectra and structure” Vol. 6 (1977)]; the standard error of the fit is 26 kHz. For methyl cyanide the 5 quartic distortion constants have been used to further refine the recent harmonic force field of Duncan et al. [J. Mol. Spectrosc. 69, 123 (1978)], but the changes are small. Finally, for both molecules, the harmonic force field has been used to determine zero point average moments of inertia Iz from the ground state rotational constants for many isotopic species, and these have been used to determine an rz structure. The results are compared with rs structure calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews a series of alternative lixiviant systems for the recovery of gold from ores and concentrates. For over 100 years, cyanide has been the leach reagent of choice in gold mining because of its high gold recoveries, robustness and relatively low costs. The environmental damages resulting from its mismanagement, however, have initiated widespread research aimed at identifying and developing less toxic leaching agents. The most widely-researched alternative lixiviants for gold ores are examined in this paper, but it is evident that none has yet made any significant inroad into the dominant position of cyanide as the reagent of choice at the vast majority of gold mines worldwide. (c) 2005 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Entomopathogenic bacterial strains Pseudomonas (Flavimonas) oryzihabitans and Xenorhabdus nematophilus, both bacterial symbionts of the entomopathogenic nematodes Steinernema abbasi and S. carpocapsae have been recently used for suppression of soil-borne pathogens. Bacterial biocontrol agents (P. oryzihabitans and X nematophila) have been tested for production of secondary metabolites in vitro and their fungistatic effect,on mycelium and spore development of soil-borne pathogens. Isolates of Pythium spp. and Rhizoctonia solani, the causal agent of cotton damping-off, varied in sensitivity in vitro to the antibiotics phenazine-I-carboxylic acid (PCA), cyanide (HCN) and siderophores produced by bacterial strains shown previously to have potential for biological control of those pathogens. These findings affirm the role of the antibiotics PCA, HCN and siderophores in the biocontrol activity of these entomopathogenic strains and support earlier evidence that mechanisms of secondary metabolites are responsible for suppression of damping-off diseases. In the present studies colonies of R oryzihabitans showed production of PCA with presence of crystalline deposits after six days development and positive production where found as well in the siderophore's assay when X nematophila strain indicated HCN production in the in vitro assays. In vitro antifungal activity showed that bacteria densities of 101 to 10(6)cells/ml have antifungal activity in different media cultures. The results show further that isolates of Pythium spp. and R. solani insensitive to PCA, HCN and siderophores are present in the pathogen population and provide additional justification for the use of mixtures of entomopathogenic strains that employ different mechanisms of pathogen suppression to manage damping-off.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural transformations between cesium silver-copper cyanides under modest conditions, both in solution and in the solid state, are described. Three new cesium silver(I) copper(I) cyanides with three-dimensional (3-D) framework structures were prepared as single crystals from a one-pot reaction initially heated under hydrothermal conditions. The first product to appear, Cs3Ag2Cu3(CN)(8) (I), when left in contact with the supernatant produced CsAgCu(CN)(3) (II) and CsAgCu(CN)(3)center dot 1/3H(2)O (III) over a few months via a series of thermodynamically controlled cascade reactions. Crystals of the hydrate (III) can be dehydrated to polycrystalline CsAgCu(CN)(3) (II) on heating at 100 degrees C in a remarkable solid-state transformation involving substantial breaking and reconnection of metal-cyanide linkages. Astonishingly, the conversion between the two known polymorphs of CsAg2Cu(CN)(4), which also involves a major change in connectivity and topology, occurs at 180 degrees C as a single-crystal to single-crystal transformation. Structural features of note in these materials include the presence of helical copper-cyanide chains in (I) and (II), which in the latter compound produce a chiral material. In (II) and (III), the silver-copper cyanide networks are both self- and interpenetrating, features also seen in the known polymorphs of CsAg2Cu(CN)(4).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selected silicas were modified with the covalently bound ligand 2,6-bis(benzoxazoyl)pyridine (BBOP), equilibrated with copper(II) nitrate, then challenged with toxic vapour containing HCN (8000 mg m(-3) at 80% relative humidity). The modified SBA-15 material (Cu-BBOP-SBA-15) had an improved breakthrough time for HCN (36 min at a flow rate of 30 cm(3) min(-1)) when compared to the other siliceous materials prepared in this study, equating to a hydrogen cyanide capacity of 58 mg g(-1), which is close to a reference activated carbon adsorbent (24 min at 50 cm(3) min(-1)) that can trap 64 mg g(-1). The enhanced performance observed with Cu-BBOP-SBA-15 has been related to the greater accessibility of the functional groups, arising from the ordered nature of the interconnected porous network and large mesopores of 5.5 nm within the material modified with the Cu(II)-BBOP complex. Modified MCM-41 and MCM-48 materials (Cu-BBOP-MCM-41 and Cu-BBOP-MCM-48) were found to have lower hydrogen cyanide capacities (38 and 32 mg g(-1) respectively) than the Cu-BBOP-SBA-15 material owing to the restricted size of the pores (2.2 and <2 nm respectively). The materials with poor nano-structured ordering were found to have low hydrogen cyanide capacities, between 11 and 19 mg g(-1), most likely owing to limited accessibility of the functional groups. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures Of four alkali-metal copper (I) cyanides, KCu2(CN)(3)(H2O)-H-.-II (I), K2Cu3(CN)(5) (II), CsCu3(CN)(4) (III) and KCu3(CN)(4) (IV) are described. Three of these, ((II)-(IV)), with previously unknown ACN:CuCN ratios have new copper-cyanide frameworks, whilst (1) is a new polymorph of KCu2(CN)(3)(H2O)-H-.. These structures are discussed in terms of assembly from the simple building units Cu(CN)(2/2), Cu(CN)(3/2), Cu(CN)(2/2)(CN)(1/1) and Cu(CN)(4/2). Compounds (I), (II) and (III) are layered materials based on (6,3) nets containing (CuCN)(6) rings (I) and (CuCN)(8) rings (II) and (III). In compound (IV), (4,4) nets containing (CuCN)(12) rings link to generate a three-dimensional network. Both (III) and (IV) are examples of interpenetrating solids in which two and four identical networks interweave, respectively. These materials illustrate the structural versatility of copper (I) in cyanide frameworks. (c) 2006 Elsevier SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutron diffraction at 11.4 and 295 K and solid-state 67Zn NMR are used to determine both the local and average structures in the disordered, negative thermal expansion (NTE) material, Zn(CN)2. Solid-state NMR not only confirms that there is head-to-tail disorder of the C≡N groups present in the solid, but yields information about the relative abundances of the different Zn(CN)4-n(NC)n tetrahedral species, which do not follow a simple binomial distribution. The Zn(CN)4 and Zn(NC)4 species occur with much lower probabilities than are predicted by binomial theory, supporting the conclusion that they are of higher energy than the other local arrangements. The lowest energy arrangement is Zn(CN)2(NC)2. The use of total neutron diffraction at 11.4 K, with analysis of both the Bragg diffraction and the derived total correlation function, yields the first experimental determination of the individual Zn−N and Zn−C bond lengths as 1.969(2) and 2.030(2) Å, respectively. The very small difference in bond lengths, of ~0.06 Å, means that it is impossible to obtain these bond lengths using Bragg diffraction in isolation. Total neutron diffraction also provides information on both the average and local atomic displacements responsible for NTE in Zn(CN)2. The principal motions giving rise to NTE are shown to be those in which the carbon and nitrogen atoms within individual Zn−C≡N−Zn linkages are displaced to the same side of the Zn···Zn axis. Displacements of the carbon and nitrogen atoms to opposite sides of the Zn···Zn axis, suggested previously in X-ray studies as being responsible for NTE behavior, in fact make negligible contribution at temperatures up to 295 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The INtegrated CAtchment (INCA) model has been developed to simulate the impact of mine discharges on river systems. The model accounts for the key kinetic chemical processes operating as well as the dilution, mixing and redistribution of pollutants in rivers downstream of mine discharges or acid rock drainage sites. The model is dynamic and simulates the day-to-day behaviour of hydrology and eight metals (cadmium, mercury, copper, zinc, lead, arsenic, manganese and chromium) as well as cyanide and ammonia. The model is semi-distributed and can simulate catchments, sub-catchment and in-stream river behaviour. The model has been applied to the Roia Montan Mine in Transylvania, Romania, and used to assess the impacts of old mine adits on the local catchments as well as on the downstream Aries and Mures river system. The question of mine restoration is investigated and a set of clean-up scenarios investigated. It is shown that the planned restoration will generate a much improved water quality from the mine and also alleviate the metal pollution of the river system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reactions of the low-temperature polymorph of copper(I) cyanide (LT-CuCN) with concentrated aqueous alkali-metal halide solutions have been investigated. At room temperature, KX (X = Br and I) and CsX (X = Cl, Br, and I) produce the addition products K[Cu-2(CN)(2)Br](H2O)-H-. (I), K-3[Cu-6(CN)(6)I-3](.)2H(2)O (II), Cs[Cu-3(CN)(3)Cl] (III), Cs[Cu-3(CN)(3)Br] (IV), and Cs-2[Cu-4(CN)(4)I-2](H2O)-H-. (V), with 3-D frameworks in which the -(CuCN)- chains present in CuCN persist. No reaction occurs, however, with NaX (X = Cl, Br, I) or KCl. The addition compounds, I-V, reconvert to CuCN when washed. Both low- and high-temperature polymorphs of CuCN (LT- and HT-CuCN) are produced, except in the case of Cs[Cu-3(CN)(3)Cl] (III), which converts only to LT-CuCN. Heating similar AX-CuCN reaction mixtures under hydrothermal conditions at 453 K for 1 day produces single crystals of I-V suitable for structure determination. Under these more forcing conditions, reactions also occur with NaX (X = Cl, Br, I) and KCl. NaBr and KCl cause some conversion of LT-CuCN into HT-CuCN, while NaCl and NaI, respectively, react to form the mixed-valence Cu(I)/Cu(II) compounds [Cu-II(OH2)(4)][Cu-4(I)(CN)(6)], a known phase, and [Cu-II(OH2)(4)][Cu-4(I)(CN)(4)I-2] (VI), a 3-D framework, which contains infinite -(CuCN)- chains. After 3 days of heating under hydrothermal conditions, the reaction between KI and CuCN produces [Cu-II(OH2)(4)][Cu-2(I)(CN)I-2](2) (VII), in which the CuCN chains are broken into single Cu-CN-Cu units, which in turn are linked into chains via iodine atoms and then into layers via long Cu-C and Cu-Cu interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cs2Cu3(CN)(5) has a layered structure consisting of [Cu-3(CN)(5)](2-) sheets stacked in an ABAB fashion along the c axis, with Cs+ cations lying between the sheets. The sheets are generated by linking -(CuCN) - chains, in which the C N groups are ordered, via [Cu(CN)(3)](2-) units. The two bridging cyanide groups of each [Cu(CN)(3)](2-) unit show partial 'head-to-tail' disorder of C and N, whilst the third C N group is terminal and ordered with C bonded to Cu.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By combining the results of both x-ray diffraction and neutron total-scattering experiments, we show that Ni(CN)(2) exhibits long-range structural order only in two dimensions, with no true periodicity perpendicular to its gridlike layers. Reverse Monte Carlo analysis gives an experimental distinction between M-C and M-N bond lengths in a homometallic cyanide framework and identifies the vibrational modes responsible for anomalous positive and negative thermal expansion in the title compound.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of gold cyanide, AuCN, has been determined at 10 and 300 K using total neutron diffraction. The structure consists of infinite -Au-(CN)-Au-(CN)-Au-(CN)- linear chains, hexagonally packed, with the gold atoms in sheets. The Au-C and Au-N bond lengths are found to be identical, with d(Au-C/N) = 1.9703(5) Angstrom at 300 K. This work supersedes a previous study, by others, which used Rietveld analysis of neutron Bragg diffraction in isolation, and found these bonds to have significantly different lengths (Deltad = 0.24 Angstrom) at 300 K. The total correlation function, T(r), at 10 and 300 K, has been modeled using information derived from total diffraction. The broadening of inter- and intrachain correlations differs markedly due to random displacements of the chains in the direction of the chain axes. This is a consequence of the relatively weak bonding between the chains. An explanation for the negative thermal expansion in the c-direction, which occurs between 10 and 300 K, is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sodium persulfate introduced into ordered MCM-48 silicas is described. The resulting materials are compared with existing activated carbon-based systems and MCM-48 containing transition metals such as Cu(II) and Cr(VI) for the decomposition of hydrogen cyanide and cyanogen. MCM-48 materials containing sodium persulfate alone improve on the protection offered by benchmark activated carbon systems and MCM-48 materials containing Cu(II) and Cr(VI), without the health risks associated with these metal ions.