37 resultados para cut height
em CentAUR: Central Archive University of Reading - UK
Resumo:
The constant-density Charney model describes the simplest unstable basic state with a planetary-vorticity gradient, which is uniform and positive, and baroclinicity that is manifest as a negative contribution to the potential-vorticity (PV) gradient at the ground and positive vertical wind shear. Together, these ingredients satisfy the necessary conditions for baroclinic instability. In Part I it was shown how baroclinic growth on a general zonal basic state can be viewed as the interaction of pairs of ‘counter-propagating Rossby waves’ (CRWs) that can be constructed from a growing normal mode and its decaying complex conjugate. In this paper the normal-mode solutions for the Charney model are studied from the CRW perspective.
Clear parallels can be drawn between the most unstable modes of the Charney model and the Eady model, in which the CRWs can be derived independently of the normal modes. However, the dispersion curves for the two models are very different; the Eady model has a short-wave cut-off, while the Charney model is unstable at short wavelengths. Beyond its maximum growth rate the Charney model has a neutral point at finite wavelength (r=1). Thereafter follows a succession of unstable branches, each with weaker growth than the last, separated by neutral points at integer r—the so-called ‘Green branches’. A separate branch of westward-propagating neutral modes also originates from each neutral point. By approximating the lower CRW as a Rossby edge wave and the upper CRW structure as a single PV peak with a spread proportional to the Rossby scale height, the main features of the ‘Charney branch’ (0
Resumo:
Radiation schemes in general circulation models currently make a number of simplifications when accounting for clouds, one of the most important being the removal of horizontal inhomogeneity. A new scheme is presented that attempts to account for the neglected inhomogeneity by using two regions of cloud in each vertical level of the model as opposed to one. One of these regions is used to represent the optically thinner cloud in the level, and the other represents the optically thicker cloud. So, along with the clear-sky region, the scheme has three regions in each model level and is referred to as “Tripleclouds.” In addition, the scheme has the capability to represent arbitrary vertical overlap between the three regions in pairs of adjacent levels. This scheme is implemented in the Edwards–Slingo radiation code and tested on 250 h of data from 12 different days. The data are derived from cloud retrievals using radar, lidar, and a microwave radiometer at Chilbolton, southern United Kingdom. When the data are grouped into periods equivalent in size to general circulation model grid boxes, the shortwave plane-parallel albedo bias is found to be 8%, while the corresponding bias is found to be less than 1% using Tripleclouds. Similar results are found for the longwave biases. Tripleclouds is then compared to a more conventional method of accounting for inhomogeneity that multiplies optical depths by a constant scaling factor, and Tripleclouds is seen to improve on this method both in terms of top-of-atmosphere radiative flux biases and internal heating rates.
Resumo:
We describe a remote sensing method for measuring the internal interface height field in a rotating, two-layer annulus laboratory experiment. The method is non-invasive, avoiding the possibility of an interaction between the flow and the measurement device. The height fields retrieved are accurate and highly resolved in both space and time. The technique is based on a flow visualization method developed by previous workers, and relies upon the optical rotation properties of the working liquids. The previous methods returned only qualitative interface maps, however. In the present study, a technique is developed for deriving quantitative maps by calibrating height against the colour fields registered by a camera which views the flow from above. We use a layer-wise torque balance analysis to determine the equilibrium interface height field analytically, in order to derive the calibration curves. With the current system, viewing an annulus of outer radius 125 mm and depth 250 mm from a distance of 2 m, the inferred height fields have horizontal, vertical and temporal resolutions of up to 0.2 mm, 1 mm and 0.04 s, respectively.
Resumo:
Effective use and recycling of manures together with occasional and judicious use of supplementary fertilizing materials forms the basis for management of phosphorus (P) and potassium (K) within organic farming systems. Replicated field trials were established at three sites across the UK to compare the supply of P and K to grass-clover swards cut for silage from a range of fertilizing materials, and to assess the usefulness of routine soil tests for P and K in organic farming systems. None of the fertilizing materials (farmyard manure, rock phosphate, Kali vinasse, volcanic tuff) significantly increased silage yields, nor was P offtake increased. However, farmyard manure and Kali vinasse proved effective sources of K to grass and clover in the short to medium term. Available P (measured as Olsen-P) showed no clear relationship with crop P offtake in these trials. In contrast, available K (measured by ammonium nitrate extraction) proved a useful measurement to predict K availability to crops and support K management decisions.
Resumo:
Flow and turbulence above urban terrain is more complex than above rural terrain, due to the different momentum and heat transfer characteristics that are affected by the presence of buildings (e.g. pressure variations around buildings). The applicability of similarity theory (as developed over rural terrain) is tested using observations of flow from a sonic anemometer located at 190.3 m height in London, U.K. using about 6500 h of data. Turbulence statistics—dimensionless wind speed and temperature, standard deviations and correlation coefficients for momentum and heat transfer—were analysed in three ways. First, turbulence statistics were plotted as a function only of a local stability parameter z/Λ (where Λ is the local Obukhov length and z is the height above ground); the σ_i/u_* values (i = u, v, w) for neutral conditions are 2.3, 1.85 and 1.35 respectively, similar to canonical values. Second, analysis of urban mixed-layer formulations during daytime convective conditions over London was undertaken, showing that atmospheric turbulence at high altitude over large cities might not behave dissimilarly from that over rural terrain. Third, correlation coefficients for heat and momentum were analyzed with respect to local stability. The results give confidence in using the framework of local similarity for turbulence measured over London, and perhaps other cities. However, the following caveats for our data are worth noting: (i) the terrain is reasonably flat, (ii) building heights vary little over a large area, and (iii) the sensor height is above the mean roughness sublayer depth.
Resumo:
Near isogenic lines (NILs) varying for genes for reduced height (Rht) and photoperiod insensitivity (Ppd-D1a) in a cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c + Ppd-D1a, Rht-D1c, Rht12) were compared at one field site but within contrasting ('organic' vs. 'conventional') rotational and agronomic contexts, in each of 3 years. In the final year, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b + Rht-D1b, Rht-D1b + Rht-B1c) in both Maris Huntsman and Maris Widgeon backgrounds were added together with 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) x Renesansa (Rht-8c + Ppd-D1a)]. Assessments included laboratory tests of germination and coleoptile length, and various field measurements of crop growth between emergence and pre jointing [plant population, tillering, leaf length, ground cover (GC), interception of photosynthetically active radiation (PAR), crop dry matter (DM) and nitrogen accumulation (N), far red: red reflectance ratio (FR:R), crop height, and weed dry matter]. All of the dwarfing alleles except Rht12 in the Mercia background and Rht8c in the DHs were associated with reduced coleoptile length. Most of the dwarfing alleles (depending on background) reduced seed viability. Severe dwarfing alleles (Rht-B1c, Rht-D1c and Rht12) were routinely associated with fewer plant numbers and reduced early crop growth (GC, PAR, DM, N, FR:R), and in 1 year, increased weed DM. In the Mercia background and the DHs the semi-dwarfing allele Rht-D1b was also sometimes associated with reductions in early crop growth; no such negative effects were associated with the marker for Rht8c. When significant interactions between cropping system and genotype did occur it was because differences between lines were more exaggerated in the organic system than in the conventional system. Ppd-D1a was associated positively with plant numbers surviving the winter and early crop growth (GC, FR:R, DM, N, PAR, height), and was the most significant locus in a QTL analysis. We conclude that, within these environmental and system contexts, genes moderating development are likely to be more important in influencing early resource capture than using Rht8c as an alternative semi-dwarfing gene to Rht-D1b.
Resumo:
This paper analyses the cut flower market as an example of an invasion pathway along which species of non-indigenous plant pests can travel to reach new areas. The paper examines the probability of pest detection by assessing information on pest detection and detection effort associated with the import of cut flowers. We test the link between the probability of plant pest arrivals as a precursor to potential invasion, and volume of traded flowers using count data regression models. The analysis is applied to the UK import of specific genera of cut flowers form Kenya between 1996 and 2004. There is a link between pest detection and the Genus of cut flower imported. Hence, pest detection efforts should focus on identifying and targeting those imported plants with a high risk of carrying pest species. For most of the plants studied efforts allocated to inspection have a significant influence on the probabilty of pest detction. However, by better targetting inspection efforts, it is shown that plant inspection effort could be reduced without increasing the risk of pest entry. Similarly, for most of the plants analysed, an increase in volume traded will not necessarily lead to an increase in the number of pests entering the UK. For some species, such as conclude that analysis at the rank of plant Genus is important both to understand the effectiveness of plant pest detection efforts and consequently to manage the risk of introduction of non-indigenous species.
Resumo:
1. Suction sampling is a popular method for the collection of quantitative data on grassland invertebrate populations, although there have been no detailed studies into the effectiveness of the method. 2. We investigate the effect of effort (duration and number of suction samples) and sward height on the efficiency of suction sampling of grassland beetle, true bug, planthopper and spider Populations. We also compare Suction sampling with an absolute sampling method based on the destructive removal of turfs. 3. Sampling for durations of 16 seconds was sufficient to collect 90% of all individuals and species of grassland beetles, with less time required for the true bugs, spiders and planthoppers. The number of samples required to collect 90% of the species was more variable, although in general 55 sub-samples was sufficient for all groups, except the true bugs. Increasing sward height had a negative effect on the capture efficiency of suction sampling. 4. The assemblage structure of beetles, planthoppers and spiders was independent of the sampling method (suction or absolute) used. 5. Synthesis and applications. In contrast to other sampling methods used in grassland habitats (e.g. sweep netting or pitfall trapping), suction sampling is an effective quantitative tool for the measurement of invertebrate diversity and assemblage structure providing sward height is included as a covariate. The effective sampling of beetles, true bugs, planthoppers and spiders altogether requires a minimum sampling effort of 110 sub-samples of duration of 16 seconds. Such sampling intensities can be adjusted depending on the taxa sampled, and we provide information to minimize sampling problems associated with this versatile technique. Suction sampling should remain an important component in the toolbox of experimental techniques used during both experimental and management sampling regimes within agroecosystems, grasslands or other low-lying vegetation types.
Resumo:
The loss of seed-rich wintering habitats has been a major contributory cause of farmland bird population declines in western Europe. Agricultural grasslands are particularly poor winter foraging habitats for granivorous birds, which have declined most in the pastoral farming regions of western Britain. We describe an experiment to test the utility of fertile ryegrass (Lolium) swards as a potentially rich source of winter seed for declining farmland birds. Four patches of final-cut grass silage were allowed to set seed and were left in situ overwinter. Half of each patch was lightly aftermath grazed in an attempt to increase the accessibility of the seed to foraging birds and reduce the perceived predation risk. Large numbers of yellowhammers (Emberiza citrinella) and reed buntings (E. schoeniclus) foraged on the seeded plots throughout the winter. They preferred to forage on ungrazed seeded plots, where the accumulation of senescent foliage resulted in a 14% average loss in silage yield in the following season. However, seed produced on the plots also led to sward regeneration, increasing subsequent yields on some plots. The technique offers clear benefits as a potential future agri-environment measure for declining granivorous birds, with wide applicability, but requires further development to minimise sward damage and costs to the farmer. Autumn grazing should reduce sward damage, but at the cost of reduced usage by buntings. Using the technique just prior to reseeding would be one way of avoiding any costs of sward damage.
Resumo:
Amphicoma ( Glaphyridae) beetles are important pollinators of red bowl-shaped flowers in the Mediterranean. The role of color and shape in flower choice is well studied but the roles of inclination, depth, and height have seldom been investigated. Under field conditions, models were used to experimentally manipulate these three characters and visitation rates of beetles were recorded. Models with red horizontal surfaces were visited significantly more often than models with red vertical surfaces. Shallow flower models were visited significantly more than deeper equivalents. Models below or at the height of natural flower populations elicited significantly more landings than models above the height of flowers. Inclination, depth, and height characteristics are all likely to be important components in the flower preferences exhibited by pollinating beetles.
Resumo:
1. Declining populations of UK grassland flora and fauna have been attributed to intensification of agricultural management practices, including changes in cutting, fertilizer, grazing and drainage regimes. We aimed to develop field margin management practices that could reverse declines in intensively managed grassland biodiversity that would have application in the UK and Europe. Here we focus on one aspect of grassland biodiversity, the beetles. 2. In four intensively managed livestock farms in south-west England, 10-m wide field margins in existing grasslands were managed to create seven treatments of increasing sward architectural complexity. This was achieved through combinations of inorganic (NPK) fertilizer, cattle grazing, and timing and height of cutting. To examine the potential influence of complexity on faunal diversity, beetles were identified to species level from suction samples taken between 2003 and 2005, and their assemblage structure was related to margin management, floral assemblages and sward architecture. 3. Beetle abundance, and species richness and evenness were influenced by margin management treatment and its interaction with year. Correlations with sward architecture and the percentage cover of dominant forbs and grasses were also found. Functional groups of the beetles showed different responses to the management treatments. In particular, higher proportional abundances of seed/flower-feeding guilds were found in treatments not receiving NPK fertilizer. 4. The assemblage structure was shown to respond to margin management treatments, sward architecture and the percentage cover of dominant forbs and grasses. The most extensively managed treatments were characterized by distinct successional trajectories from the control treatment. 5. Synthesis and applications. This study provides management options suitable for use within agri-environment schemes intended to improve faunal diversity associated with intensively managed lowland grasslands. Field margins receiving either no management or a single July silage cut were shown to support greater abundances and species richness of beetles, although subtler modifications of conventional management may also be beneficial, for example the absence of NPK fertilizer while maintaining grazing and silage cutting systems.
Resumo:
The paper describes a method whereby the distribution of fatigue damage along riser tensioner ropes is calculated, taking account of heave motion, set tension, system geometry, tidal range and rope specification. From these data the distribution of damage along the rope is calculated for a given time period using a Miner’s summation method. This information can then be used to help the operator decide on the length of rope to ‘slip and cut’ whereby a length from the end of the rope is removed and the rope moved through the system from a storage drum such that sections of rope that have already suffered significant fatigue damage are not moved to positions where there is another peak in the distribution. There are two main advantages to be gained by using the fatigue damage model. The first is that it shows the amount of fatigue damage accumulating at different points along the rope, enabling the most highly damaged section to be removed well before failure. The second is that it makes for greater efficiency, as damage can be spread more evenly along the rope over time, avoiding the need to scrap long sections of undamaged rope.