100 resultados para customer loads decomposition
em CentAUR: Central Archive University of Reading - UK
Resumo:
We have investigated the adsorption and thermal decomposition of copper hexafluoroacetylacetonate (Cu-11(hfaC)(2)) on single crystal rutile TiO2(110). Low energy electron diffraction shows that room temperature saturation coverage of the Cu-II(hfac)(2) adsorbate forms an ordered (2 x 1) over-layer. X-ray and ultra-violet photoemission spectroscopy of the saturated surface were recorded as the sample was annealed in a sequential manner to reveal decomposition pathways. The results show that the molecule dissociatively adsorbs by detachment of one of the two ligands to form hfac and Cu-1(hfac) which chemisorb to the substrate at 298 K. These ligands only begin to decompose once the surface temperature exceeds 473 K where Cu core level shifts indicate metallisation. This reduction from Cu(I) to Cu(0) takes place in the absence of an external reducing agent and without disproportionation and is accompanied by the onset of decomposition of the hfac ligands. Finally, C K-edge near edge X-ray absorption fine structure experiments indicate that both the ligands adsorb aligned in the < 001 > direction and we propose a model in which the hfac ligands adsorb on the 5-fold coordinated Ti atoms and the Cu-1(hfac) moiety attaches to the bridging O atoms in a square planar geometry. The calculated tilt angle for these combined geometries is approximately 10 degrees to the surface normal.
Resumo:
The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.
Resumo:
The combined use of organic residue and inorganic fertiliser-phosphorus (P) is appropriate in meeting both the short and long-term P requirement of crops. To assess the influence of added inorganic fertiliser-P on the processes of decomposition and P release from the residue and the relationships with quality, prunings of Gliricidia sepium, Leucaena leucocephela, Senna siamea, Acacia mangium and Paraserienthus falcataria were incubated without and with added inorganic fertiliser-P for 56 days. Soil was added only as inoculum. Decomposition rate and amounts of acid extractable-P (P release) were in the same order: G. sepium > S. siamea > L. leucocepheta > P falcataria > A. mangium. Unlike the other residues, A. mangium released no P despite the loss of half its mass during the 8 weeks of incubation. The residue P content correlated with P release. However, decomposition rate did not correlate with residue P content but with the lignin, polyphenol and cellulose content, and ratios to P. These ratios were negatively correlated with P release suggesting that lignin and polyphenol contents influence P release more when the residue-P content is low. Results suggest that rate of decomposition influences the release of P. The critical residue P content for P release was estimated to be 0.12% < P < 0.19%. Added P had no effect on decomposition and P release from the residues.
Resumo:
Critical loads are the basis for policies controlling emissions of acidic substances in Europe. The implementation of these policies involves large expenditures, and it is reasonable for policymakers to ask what degree of certainty can be attached to the underlying critical load and exceedance estimates. This paper is a literature review of studies which attempt to estimate the uncertainty attached to critical loads. Critical load models and uncertainty analysis are briefly outlined. Most studies have used Monte Carlo analysis of some form to investigate the propagation of uncertainties in the definition of the input parameters through to uncertainties in critical loads. Though the input parameters are often poorly known, the critical load uncertainties are typically surprisingly small because of a "compensation of errors" mechanism. These results depend on the quality of the uncertainty estimates of the input parameters, and a "pedigree" classification for these is proposed. Sensitivity analysis shows that some input parameters are more important in influencing critical load uncertainty than others, but there have not been enough studies to form a general picture. Methods used for dealing with spatial variation are briefly discussed. Application of alternative models to the same site or modifications of existing models can lead to widely differing critical loads, indicating that research into the underlying science needs to continue.
Resumo:
This paper reports an uncertainty analysis of critical loads for acid deposition for a site in southern England, using the Steady State Mass Balance Model. The uncertainty bounds, distribution type and correlation structure for each of the 18 input parameters was considered explicitly, and overall uncertainty estimated by Monte Carlo methods. Estimates of deposition uncertainty were made from measured data and an atmospheric dispersion model, and hence the uncertainty in exceedance could also be calculated. The uncertainties of the calculated critical loads were generally much lower than those of the input parameters due to a "compensation of errors" mechanism - coefficients of variation ranged from 13% for CLmaxN to 37% for CL(A). With 1990 deposition, the probability that the critical load was exceeded was > 0.99; to reduce this probability to 0.50, a 63% reduction in deposition is required; to 0.05, an 82% reduction. With 1997 deposition, which was lower than that in 1990, exceedance probabilities declined and uncertainties in exceedance narrowed as deposition uncertainty had less effect. The parameters contributing most to the uncertainty in critical loads were weathering rates, base cation uptake rates, and choice of critical chemical value, indicating possible research priorities. However, the different critical load parameters were to some extent sensitive to different input parameters. The application of such probabilistic results to environmental regulation is discussed.
Resumo:
Critical loads are the basis for policies controlling emissions of acidic substances in Europe and elsewhere. They are assessed by several elaborate and ingenious models, each of which requires many parameters, and have to be applied on a spatially-distributed basis. Often the values of the input parameters are poorly known, calling into question the validity of the calculated critical loads. This paper attempts to quantify the uncertainty in the critical loads due to this "parameter uncertainty", using examples from the UK. Models used for calculating critical loads for deposition of acidity and nitrogen in forest and heathland ecosystems were tested at four contrasting sites. Uncertainty was assessed by Monte Carlo methods. Each input parameter or variable was assigned a value, range and distribution in an objective a fashion as possible. Each model was run 5000 times at each site using parameters sampled from these input distributions. Output distributions of various critical load parameters were calculated. The results were surprising. Confidence limits of the calculated critical loads were typically considerably narrower than those of most of the input parameters. This may be due to a "compensation of errors" mechanism. The range of possible critical load values at a given site is however rather wide, and the tails of the distributions are typically long. The deposition reductions required for a high level of confidence that the critical load is not exceeded are thus likely to be large. The implication for pollutant regulation is that requiring a high probability of non-exceedance is likely to carry high costs. The relative contribution of the input variables to critical load uncertainty varied from site to site: any input variable could be important, and thus it was not possible to identify variables as likely targets for research into narrowing uncertainties. Sites where a number of good measurements of input parameters were available had lower uncertainties, so use of in situ measurement could be a valuable way of reducing critical load uncertainty at particularly valuable or disputed sites. From a restricted number of samples, uncertainties in heathland critical loads appear comparable to those of coniferous forest, and nutrient nitrogen critical loads to those of acidity. It was important to include correlations between input variables in the Monte Carlo analysis, but choice of statistical distribution type was of lesser importance. Overall, the analysis provided objective support for the continued use of critical loads in policy development. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.
Resumo:
Spin factors and generalizations are used to revisit positive generation of B(E, F), where E and F are ordered Banach spaces. Interior points of B(E, F)+ are discussed and in many cases it is seen that positive generation of B(E, F) is controlled by spin structure in F when F is a JBW-algebra.
Resumo:
A primary objective of agri-environment schemes is the conservation of biodiversity; in addition to increasing the value of farmland for wildlife, these schemes also aim to restore natural ecosystem functioning. The management of scheme options can influence their value for delivering ecosystem services by modifying the composition of floral and faunal communities. This study examines the impact of an agri-environment scheme prescription on ecosystem functioning by testing the hypothesis that vegetation management influences decomposition rates in grassy arable field margins. The effects of two vegetation management practices in arable field margins - cutting and soil disturbance (scarification) - on litter decomposition were compared using a litterbag experimental approach in early April 2006. Bags had either small mesh designed to restrict access to soil macrofauna, or large mesh that would allow macrofauna to enter. Bags were positioned on the soil surface or inserted into the soil in cut and scarified margins, retrieved after 44, 103 and 250 days and the amount of litter mass remaining was calculated. Litter loss from the litterbags with large mesh was greater than from the small mesh bags, providing evidence that soil macrofauna accelerate rates of litter decomposition. In the large mesh bags, the proportion of litter remaining in bags above and belowground in the cut plots was similar, while in the scarified plots, there was significantly more litter left in the aboveground bags than in the belowground bags. This loss of balance between decomposition rates above and belowground in scarified margins may have implications for the development and maintenance of grassy arable field margins by influencing nutrient availability for plant communities. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Phoretic mites are likely the most abundant arthropods found on carcases and corpses. They outnumber their scavenger carriers in both number and diversity. Many phoretic mites travel on scavenger insects and are highly specific; they will arrive on a particular species of host and no other. Because of this, they may be useful as trace indicators of their carriers even when their carriers are absent. Phoretic mites can be valuable markers of time. They are usually found in a specialised transitional transport or dispersal stage, often moulting and transforming to adults shortly after arrival on a carcase or corpse. Many are characterised by faster development and generation cycles than their carriers. Humans are normally unaware, but we too carry mites; they are skin mites that are present in our clothes. More than 212 phoretic mite species associated with carcases have been reported in the literature. Among these, mites belonging to the Mesostigmata form the dominant group, represented by 127 species with 25 phoretic mite species belonging to the family Parasitidae and 48 to the Macrochelidae. Most of these mesostigmatids are associated with particular species of flies or carrion beetles, though some are associated with small mammals arriving during the early stages of decomposition. During dry decay, members of the Astigmata are more frequently found; 52 species are phoretic on scavengers, and the majority of these travel on late-arriving scavengers such as hide beetles, skin beetles and moths. Several species of carrion beetles can visit a corpse simultaneously, and each may carry 1-10 species of phoretic mites. An informative diversity of phoretic mites may be found on a decaying carcass at any given time. The composition of the phoretic mite assemblage on a carcass might provide valuable information about the conditions of and time elapsed since death.
Resumo:
The absorption cross-sections of Cl2O6 and Cl2O4 have been obtained using a fast flow reactor with a diode array spectrometer (DAS) detection system. The absorption cross-sections at the wavelengths of maximum absorption (lambda(max)) determined in this study are those of Cl2O6: (1.47 +/- 0.15) x 10(-17) cm(2) molecule(-1), at lambda(max) = 276 nm and T = 298 K; and Cl2O4: (9.0 +/- 2.0) x 10(-19) cm(2) molecule(-1), at lambda(max) = 234 nm and T = 298 K. Errors quoted are two standard deviations together with estimates of the systematic error. The shapes of the absorption spectra were obtained over the wavelength range 200-450 nm for Cl2O6 and 200-350 nm for Cl2O4, and were normalized to the absolute cross-sections obtained at lambda(max) for each oxide, and are presented at 1 nm intervals. These data are discussed in relation to previous measurements. The reaction of O with OCIO has been investigated with the objective of observing transient spectroscopic absorptions. A transient absorption was seen, and the possibility is explored of identifying the species with the elusive sym-ClO3 or ClO4, both of which have been characterized in matrices, but not in the gas-phase. The photolysis of OCIO was also re-examined, with emphasis being placed on the products of reaction. UV absorptions attributable to one of the isomers of the ClO dimer, chloryl chloride (ClClO2) were observed; some Cl2O4 was also found at long photolysis times, when much of the ClClO2 had itself been photolysed. We suggest that reports of Cl2O6 formation in previous studies could be a consequence of a mistaken identification. At low temperatures, the photolysis of OCIO leads to the formation of Cl2O3 as a result of the addition of the ClO primary product to OCIO. ClClO2 also appears to be one product of the reaction between O-3 and OCIO, especially when the reaction occurs under explosive conditions. We studied the kinetics of the non-explosive process using a stopped-flow technique, and suggest a value for the room-temperature rate coefficient of (4.6 +/- 0.9) x 10(-19) cm(3) molecule(-1) s(-1) (limit quoted is 2sigma random errors). The photochemical and thermal decomposition of Cl2O6 is described in this paper. For photolysis at k = 254 nm, the removal of Cl2O6 is not accompanied by the build up of any other strong absorber. The implications of the results are either that the photolysis of Cl2O6 produces Cl-2 directly, or that the initial photofragments are converted rapidly to Cl-2. In the thermal decomposition of Cl2O6, Cl2O4 was shown to be a product of reaction, although not necessarily the major one. The kinetics of decomposition were investigated using the stopped-flow technique. At relatively high [OCIO] present in the system, the decay kinetics obeyed a first-order law, with a limiting first-order rate coefficient of 0.002 s(-1). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Selected silicas were modified with the covalently bound ligand 2,6-bis(benzoxazoyl)pyridine (BBOP), equilibrated with copper(II) nitrate, then challenged with toxic vapour containing HCN (8000 mg m(-3) at 80% relative humidity). The modified SBA-15 material (Cu-BBOP-SBA-15) had an improved breakthrough time for HCN (36 min at a flow rate of 30 cm(3) min(-1)) when compared to the other siliceous materials prepared in this study, equating to a hydrogen cyanide capacity of 58 mg g(-1), which is close to a reference activated carbon adsorbent (24 min at 50 cm(3) min(-1)) that can trap 64 mg g(-1). The enhanced performance observed with Cu-BBOP-SBA-15 has been related to the greater accessibility of the functional groups, arising from the ordered nature of the interconnected porous network and large mesopores of 5.5 nm within the material modified with the Cu(II)-BBOP complex. Modified MCM-41 and MCM-48 materials (Cu-BBOP-MCM-41 and Cu-BBOP-MCM-48) were found to have lower hydrogen cyanide capacities (38 and 32 mg g(-1) respectively) than the Cu-BBOP-SBA-15 material owing to the restricted size of the pores (2.2 and <2 nm respectively). The materials with poor nano-structured ordering were found to have low hydrogen cyanide capacities, between 11 and 19 mg g(-1), most likely owing to limited accessibility of the functional groups. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The kinetics of the title reactions have been studied by relative-rate methods as a function of temperature. Relative-rate coefficients for the two decomposition channels of 2-methyl-2-butoxyl have been measured at five different temperatures between 283 and 345 K and the observed temperature dependence is consistent with the results of some previous experimental studies. The kinetics of the two decomposition channels of 2-methyl-2-pentoxyl have also been investigated, as a function of temperature, relative to the estimated rate of isomerisation of this radical. Room-temperature rate coefficient data for the two decomposition channels of both 2-methyl-2-pentoxyl and 2-methyl-2-butxoyl (after combining the relative rate coefficient for this latter with a value for the rate coefficient of the major channel, extrapolated from the data presented by Batt et al., Int. J. Chem. Kinet., 1978, 10, 931) are shown to be consistent with a non-linear kinetic correlation, for alkoxyl radical decomposition rate data, previously presented by this laboratory (Johnson et al., Atmos. Environ., 2004, 38, 1755-1765).