24 resultados para cultivated soybean
em CentAUR: Central Archive University of Reading - UK
Resumo:
The particle size distributions of surface soils from two cultivated silty fields (Moorfield and Railway South) in Herefordshire, UK, were assessed by sampling on 20-m grids across the fields. Moorfield (8 ha) had a uniform landscape sloping mainly in a North-South direction while Railway South (12 ha) had complex undulating landscape characteristics. Samples from 3 surficial layers were also taken at 3 landscape positions at Moorfield to investigate recent (within-season) soil particle redistribution. Size fractions were determined using chemical dispersion, wet sieving (to separate the sand fractions) and laser gramilometry (for the finer fractions). The distribution of various fractions and the relationships between elevation and the various fractions suggest preferential detachment and movement of coarse to very coarse silt fractions (16-63 mu m), which were found mostly at downslope or depositional areas. Upper slope samples had higher clay to fine silt (< 16 mu m) contents than bottom slope samples. The upslope-downslope patterns of size fractions, particularly on uniformly sloping areas, of the 2 fields were similar and their deposited sediments were dominated by coarse silt fractions. Samples from 3 landscape positions at Moorfield became coarser from the less eroded summit, through the eroding side-slope to the bottom-slope depositional area. Within each of these landscape positions the top 0-2.5 cm layers were more enriched in coarse silt fractions than the bottom layers. The spatial patterns of soil particle size distributions in the 2 fields may be a result of sediment detachment and deposition caused by water erosion and tillage operations. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The levels of health-related phytochemicals were determined in lettuce leaf and in strawberry, raspberry and blueberry fruits grown in near-commercial conditions under plastic films of three different UV transparencies. In the red lettuce Lollo Rosso, total phenolics, anthocyanin, luteolin and quercetin levels were all raised by changing from a UV blocking film to a film of low UV transparency, and to a film of high UV transparency. The related green lettuce, Lollo Biondo, cultivated under the same conditions, showed virtually no phytochemical responses to the same variation in UV levels. Overall, the phenolic levels of strawberries, raspberries, and blueberries were unresponsive to the UV transparency of the plastic film under which the crops were grown. The significance of these findings is discussed in relation to the nutritional quality of soft fruit and salad crops which are increasingly being grown commercially under plastic tunnels.
Resumo:
This study evaluated the effect of starter culture and fermentation period on the isoflavone content of protein-rich soybeans variety TG145. Initially, soybeans were washed, soaked in water for 16 h and autoclaved at 121°C for 40min. Three different bacterial starter cultures (~104 CFU/g) namely Bacillus subtilis BEST195, B. subtilis Asaichiban and B. subtilis TN51 were then added and the fermentation was allowed to proceed at 42°C for 24 h (natto-style) and 72 h (thua nao-style). The quantities of six major isoflavones (daidzin, genistin, glycitin, daidzein, genistein, and glycitein) were then determined in these fermented soybean products using reverse phase HPLC technique. Generally, our results clearly showed that the content of total isoflavones in the fermented products prepared by Bacillus starter cultures greatly increased ranging from 43 to 99% compared to that of the unfermented autoclaved soybeans. In addition, a dramatic increase of aglycones was also observed (> 400%) in the soybean products fermented by Bacillus subtilis strain TN51. This present study suggests a promising use of Bacillus starter cultures in improving isoflavone compounds especially the aglycones which would benefit for novel functional food development.
Resumo:
A feedlot trial was conducted to determine the effect of dietary vitamin A concentration and roasted soybean (SB) inclusion on carcass characteristics, adipose tissue cellularity, and muscle fatty acid composition. Angus-crossbred steers (n = 168; 295 +/- 1.8 kg) were allotted to 24 pens (7 steers each). Four treatments, in a 2 x 2 factorial arrangement, were investigated: no supplemental vitamin A, no roasted soybeans (NANS); no vitamin A, roasted SB (20% of the diet on a DM basis; NASB); with supplemental (2,700 IU/kg) vitamin A, no roasted SB (WANS); and with supplemental vitamin A, roasted SB (WASB). Diets included high moisture corn, 5% corn silage, 10 to 20% supplement, and 20% roasted SB in the SB treatments on a DM basis. The calculated vitamin A concentration in the basal diet was < 1,300 IU/kg of DM. Blood samples (2 steers/pen) were collected for serum vitamin A determination. Steers were slaughtered after 168 d on feed. Carcass characteristics and LM composition were determined. Fatty acid composition of LM was analyzed, and adipose cellularity in the i.m. and s.c. depots was determined. No vitamin A x SB interactions were detected (P > 0.10) for cattle performance, carcass composition, or muscle fatty acid composition. Low vitamin A diets (NA) did not affect (P > 0.05) ADG, DMI, or G:F. Quality grade tended (P = 0.07) to be greater in NA steers. Marbling scores and the percentage of carcasses grading > or = Choice(-) were 10% greater for NA steers, although these trends were not significant (P = 0.11 and 0.13, respectively). Backfat thickness and yield grade were not affected (P > 0.26) by vitamin A supplementation. Composition of the LM was not affected (P > 0.15) by vitamin A or SB supplementation. Serum retinol at slaughter was 44% lower (P < 0.01) for steers fed NA than for steers supplemented with vitamin A (23.0 vs. 41.1 microg/dL). A vitamin A x SB interaction occurred (P < 0.05) for adipose cellularity in the i.m. depot; when no SB was fed, vitamin A supplementation decreased cell density and increased cell size. However, when SB was fed, vitamin A supplementation did not affect adipose cellularity. Adipose cellularity at the s.c. depot was not affected (P > 0.18) by vitamin A or SB treatments. Fatty acid profile of the LM was not affected by vitamin A (P > 0.05), but SB increased (P < 0.05) PUFA (7.88 vs. 4.30 g/100 g). It was concluded that feeding NA tended to increase marbling without affecting back-fat and yield grade. It appeared that NA induced hyperplasia in the i.m. but not in the s.c. fat depot.
Resumo:
The effects of specific nutrients on secretion and plasma concentrations of gut peptides (glucagon-like peptide-1((7-36)) amide (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin-8 (CCK)) differ across species, but are not reported for cattle. Our objective was to determine acute (hours) and chronic (1 week) effects of increased abomasal supply of protein, carbohydrate, or fat to the small intestine on dry matter intake (DMI) and plasma concentrations of GLP-1, GIP, CCK, and insulin. Four mid-lactation Holstein cows were used in a 4 x 4 Latin square design experiment. Treatments were 7-day abomasal infusions of water, soybean oil (500 g/d), corn starch (1100 g/d), or casein (800 g/d). Jugular vein plasma was obtained over 7 h at the end of the first and last day of infusions. Oil infusion decreased DMI on day 7, but total metabolizable energy (ME) supply (diet plus infusate) did not differ from water infusion. Casein and starch infusion had no effect on feed DMI; thus, ME supply increased. Decreased DMI on day 7 of oil infusion was accompanied by increased plasma GLP-1 concentration, but decreased plasma CCK concentration. Increased plasma GIP concentration was associated with increased ME supply on day 7 of casein and starch infusion. Casein infusion tended to increase plasma CCK concentration on both days of sampling, and increased plasma GLP-1 and insulin concentration on day 1 of infusion. The present data indicate a sustained elevation of plasma concentration of GLP-1, but not CCK, may contribute to the reduced DMI observed in dairy cows provided supplemental fat. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The objective of the present studies was to determine effects of basal dietary forage source on the response of milk fatty acid composition to an oil supplement based (2:1, respectively, w/w) on soybean oil and marine algae biomass oil high in cis-9, cis-12 C18:2n − 3 and C22:6n − 3, respectively. In Study 1, Hampshire × Dorset ewes (48) were randomly assigned to one of four treatments and 12 pens in a completely randomized design blocked on the basis of lambing date and number of lambs suckled. Control rations (60:40 forage:concentrate, dry matter (DM) basis) based on alfalfa pellets (AP) or corn silage (CS) were fed from lambing. Beginning at 22 days postpartum, three pens of ewes fed AP and three pens of ewes fed CS were supplemented with oil (30 g/kg of ration DM) in place of corn meal. Average ewe DM intake (DMI) and average daily gain (ADG) were measured weekly. Milk yield and composition were measured at 42 days postpartum. DMI was lower (P<0.02) for CS and for oil, but milk yield was not affected by forage source or oil supplementation. Milk fat content was higher for oil (P<0.10) and milk protein content was higher for AP (P<0.04). Total CLA concentration (g/100 g fatty acids) increased (P<0.01) with CS and oil, and the response to oil was greater for AP (P<0.04). Similarly, total trans-C18:1 and C22:6ω−3 concentrations were higher for CS and oil, but the response to oil was greater for CS (P<0.06 and P<0.01, respectively). In Study 2, the experiment was repeated using alfalfa haylage (AH) instead of AP. The DMI decreased (P<0.05) with oil feeding, but was not affected by forage source. Milk yield was decreased by feeding oil with AH, but not by feeding oil with CS (P<0.03). Milk fat content tended to be increased by feeding oil with AH, but tended to be decreased by feeding oil with CS (P<0.08). Total CLA concentration was increased (P<0.01) for AH versus CS and by oil, and the response to oil supplementation was greater for AH (P<0.01). In contrast, total trans-C18:1 concentration was higher for CS versus AH, with a greater response to oil for CS (P<0.05). Feeding marine oil increased the C22:6ω−3 (P<0.01) concentration, and the response was greater for AH (P<0.04). To further characterize the response of milk fat composition to dietary oil in ewes, a third study used six pens of three ewes each assigned to either the control CS diet used for Study 2 or the same diet supplemented with 45 g/kg (DM basis) of the oil mixture. Feeding oil had no effect on DMI, milk yield or milk fat concentration, but again increased (P<0.001) total trans-C18:1 and C22:6ω−3 concentrations and numerically increased (114%) total CLA concentration. Milk fatty acid composition responses to supplemental vegetable and marine oils were affected by forage source. Milk trans-C18:1 concentration was higher when CS was fed in Studies 1 and 2, but the effect of forage species on CLA concentration differed between studies, which may reflect differences in diet PUFA content and consumption, as well as amounts of dietary starch and fiber consumed. Despite large increases in trans-C18:1 concentration, milk fat content was not decreased by feeding unsaturated oils to ewes, even at diet levels of 45 g/kg of ration DM.
Resumo:
The presence of savory peptides in moromi has been investigated. Moromi was prepared by fermenting yellow soybean using Aspergillus oryzae as the starter at the first step (mold fermentation) and 20% brine solution at the next step (brine fermentation). The moromi was then ultrafiltered stepwise using membranes with MW cut-offs of 10,000, 3,000, and 500 Da, respectively. The fraction with MW < 500 Da was chromatographed using Sephadex G-25 SF to yield four fractions, 1-4. Analysis of soluble peptides, NaCl content, alpha-amino nitrogen, amino acid composition, peptide profile using CE coupled with DAD, taste profile and free glutamic acid content, were performed for each fraction. Fraction 2 contained a relatively high total glutamic acid content, but a relatively low free glutamic acid content and had the highest umami taste. This fraction also had more peptides containing non-aromatic amino acids than the other fractions. The peptides present in fraction 2 may play a role, at least in part, in its intense umami taste.
Resumo:
Postembedding immunoelectron microscopy has been used to investigate the diffusibility of an endo-beta-1,4-glucanase and a xylanase from A. niger in soybean. The results showed more specific localisation of the enzymes into the protein and lipid bodies of soybean cells. This was against our hypothesis that suggested that the enzymes should be localised in the cell wall.
Resumo:
The antioxidant activity of an extract from Teaw (Cratoxylum formosum Dyer) leaves was studied in soybean oil and soybean oil-in-water emulsions. Samples containing the extract or reference antioxidants including chlorogenic acid, which comprises 60% of the Teaw extract, were stored at 60 degrees C and analyzed periodically for peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) to allow both hydroperoxides and hydroperoxide degradation products to be monitored. Chlorogenic acid and the Teaw extract were more effective than a-tocopherol in inhibiting lipid oxidation in bulk oil but were less effective in an oil-in-water emulsion in accordance with the polar paradox. The PV/TBARS ratio for oil samples containing chlorogenic acid was higher than for alpha-tocopherol and BHT because chlorogenic acid inhibits both hydroperoxide formation by radical scavenging and hydroperoxide decomposition by metal chelation. The importance of the metal-chelating activity in retarding hydroperoxide decomposition was confirmed by studying the decomposition of oil samples containing added ferric ions. The PV/TBARS ratio was higher for citric acid than for (x-tocopherol in the presence of added ferric chloride, but the order was reversed in samples lacking ferric chloride. Samples containing added chlorogenic acid gave the highest PV/TBARS ratios both in the presence and absence of ferric ions. The PV/TBARS ratios for the samples containing antioxidants fell rapidly to lower values in a soybean oil-in-water emulsion than in the soybean oil. This was due to increased hydroperoxide decomposition in the emulsion at the same PV. The Teaw extract contained 12% oil-soluble components, which contributed to a slightly higher oil-water partition coefficient than that of chlorogenic acid. The antioxidant activity of the aqueous phase of the Teaw extract was reduced more than that of chlorogenic acid by partitioning of the oil-soluble components into oil, which showed that the less-polar components contributed to the antioxidant activity of the Teaw extract in aqueous media.
Resumo:
Thua nao, a rich source of free-amino acids, is a fermented soybean, usually used as seasoning or flavouring enhancer in northern Thailand. Free-amino acids (FAA) of unfermented/cooked soybeans, thua nao, fermented by pure Bacillus subtilis TN51 (TNB51), and a naturally fermented product (TNMX), were investigated by pre-column derivatisation with 9-fluorenylmethyl chloroformate, followed by reversed-phase HPLC. Total FAA and essential amino acids were found at significantly higher concentrations in TNB51 thua nao than in TNMX thua nao (naturally fermented). Both fermented thua nao had much higher concentrations of FAA than had their unfermented counterparts. With respect to taste-enhancing FAA, typical bitter attributes of thua nao came mainly from hydrophobic and basic FAA, whereas an umami attribute came predominantly from acidic FAA.
Resumo:
The effects of increased postruminal supply of casein, corn starch, and soybean oil on plasma concentrations of the gastrointestinal hormones ghrelin and oxyntomodulin (OXM) were investigated. Four mid-lactation Holstein cows were used in a 4×4 Latin square. Treatments were continuous abomasal infusions (23h/d) for 7 d of water, soybean oil (500g/d), corn starch (1100g/d), or casein (800g/d). Jugular vein plasma was obtained every 30min for 7h on days 1 and 7. Soybean oil and casein infusion decreased preprandial plasma ghrelin concentration by approximately 20% on both d (time-by-treatment P<0.10); however, dry matter intake (DMI) was depressed only after 7 d of oil infusion. Infusion of soybean oil, corn starch, or casein did not change the plasma OXM concentration (P>0.20). The present data indicate that plasma ghrelin concentration is depressed immediately before feeding by the postruminal infusion of soybean oil and casein, but it is not affected during the postprandial period. Plasma ghrelin concentration was not altered (P>0.20), pre- or postfeeding, by increased postruminal supply of corn starch. In addition, plasma OXM concentration did not respond (P>0.20) to postruminal nutrient infusion. In conclusion, a decrease in DMI when fat is infused could be partially explained by the decrease in prefeeding plasma ghrelin concentration, but a decrease in prefeeding plasma ghrelin concentration is not always associated with a decrease in DMI, as observed for the infusion of casein. Plasma OXM concentration was not affected by postruminal infusion of macronutrients.
Resumo:
The objective of this study was to investigate the effect of elevated (550 ± 17 μmol mol−1) CO2 concentration ([CO2]) on leaf ultrastructure, leaf photosynthesis and seed yield of two soybean cultivars [Glycine max (L.) Merr. cv. Zhonghuang 13 and cv. Zhonghuang 35] at the Free-Air Carbon dioxide Enrichment (FACE) experimental facility in North China. Photosynthetic acclimation occurred in soybean plants exposed to long-term elevated [CO2] and varied with cultivars and developmental stages. Photosynthetic acclimation occurred at the beginning bloom (R1) stage for both cultivars, but at the beginning seed (R5) stage only for Zhonghuang 13. No photosynthetic acclimation occurred at the beginning pod (R3) stage for either cultivar. Elevated [CO2] increased the number and size of starch grains in chloroplasts of the two cultivars. Soybean leaf senescence was accelerated under elevated [CO2], determined by unclear chloroplast membrane and blurred grana layer at the beginning bloom (R1) stage. The different photosynthesis response to elevated [CO2] between cultivars at the beginning seed (R5) contributed to the yield difference under elevated [CO2]. Elevated [CO2] significantly increased the yield of Zhonghuang 35 by 26% with the increased pod number of 31%, but not for Zhonghuang 13 without changes of pod number. We conclude that the occurrence of photosynthetic acclimation at the beginning seed (R5) stage for Zhonghuang 13 restricted the development of extra C sink under elevated [CO2], thereby limiting the response to elevated [CO2] for the seed yield of this cultivar.
Resumo:
The worldwide spread of barley cultivation required adaptation to agricultural environments far distant from those found in its centre of domestication. An important component of this adaptation is the timing of flowering, achieved predominantly in response to day length and temperature. Here, we use a collection of cultivars, landraces and wild barley accessions to investigate the origins and distribution of allelic diversity at four major flowering time loci, mutations at which have been under selection during the spread of barley cultivation into Europe. Our findings suggest that while mutant alleles at the PPD-H1 and PPD-H2 photoperiod loci occurred pre-domestication, the mutant vernalization non-responsive alleles utilized in landraces and cultivars at the VRN-H1 and VRN-H2 loci occurred post-domestication. The transition from wild to cultivated barley is associated with a doubling in the number of observed multi-locus flowering-time haplotypes, suggesting that the resulting phenotypic variation has aided adaptation to cultivation in the diverse ecogeographic locations encountered. Despite the importance of early-flowering alleles during the domestication of barley in Europe, we show that novel VRN alleles associated with early flowering in wild barley have been lost in domesticates, highlighting the potential of wild germplasm as a source of novel allelic variation for agronomic traits.