4 resultados para critical path timeline
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper develops cycle-level FPGA circuits of an organization for a fast path-based neural branch predictor Our results suggest that practical sizes of prediction tables are limited to around 32 KB to 64 KB in current FPGA technology due mainly to FPGA area of logic resources to maintain the tables. However the predictor scales well in terms of prediction speed. Table sizes alone should not be used as the only metric for hardware budget when comparing neural-based predictor to predictors of totally different organizations. This paper also gives early evidence to shift the attention on to the recovery from mis-prediction latency rather than on prediction latency as the most critical factor impacting accuracy of predictions for this class of branch predictors.
Resumo:
This article summarises recent revisions to the investment development path (IDP) as postulated by Narula and Dunning (2010). The IDP provides a framework to understand the dynamic interaction between foreign direct investment (FDI) and economic development. The revisions take into account some recent changes in the global economic environment. This paper argues that studies based on the IDP should adopt a broader perspective, encompassing the idiosyncratic economic structure of countries as well as the heterogeneous nature of FDI. It is critical to understand the complex forces and interactions that determine the turning points in a country’s IDP, and to more explicitly acknowledge the role of historical, social and political circumstances in hindering or promoting FDI. We discuss some of the implications for Eastern European countries and provide some guidelines for future research.
Resumo:
Simultaneous scintillometer measurements at multiple wavelengths (pairing visible or infrared with millimetre or radio waves) have the potential to provide estimates of path-averaged surface fluxes of sensible and latent heat. Traditionally, the equations to deduce fluxes from measurements of the refractive index structure parameter at the two wavelengths have been formulated in terms of absolute humidity. Here, it is shown that formulation in terms of specific humidity has several advantages. Specific humidity satisfies the requirement for a conserved variable in similarity theory and inherently accounts for density effects misapportioned through the use of absolute humidity. The validity and interpretation of both formulations are assessed and the analogy with open-path infrared gas analyser density corrections is discussed. Original derivations using absolute humidity to represent the influence of water vapour are shown to misrepresent the latent heat flux. The errors in the flux, which depend on the Bowen ratio (larger for drier conditions), may be of the order of 10%. The sensible heat flux is shown to remain unchanged. It is also verified that use of a single scintillometer at optical wavelengths is essentially unaffected by these new formulations. Where it may not be possible to reprocess two-wavelength results, a density correction to the latent heat flux is proposed for scintillometry, which can be applied retrospectively to reduce the error.
Resumo:
From Milsom's equations, which describe the geometry of ray-path hops reflected from the ionospheric F-layer, algorithms for the simplified estimation of mirror-reflection height are developed. These allow for hop length and the effects of variations in underlying ionisation (via the ratio of the F2- and E-layer critical frequencies) and F2-layer peak height (via the M(3000)F2-factor). Separate algorithms are presented which are applicable to a range of signal frequencies about the FOT and to propagation at the MUF. The accuracies and complexities of the algorithms are compared with those inherent in the use of a procedure based on an equation developed by Shimazaki.