3 resultados para cost elements
em CentAUR: Central Archive University of Reading - UK
Resumo:
Distributed generation plays a key role in reducing CO2 emissions and losses in transmission of power. However, due to the nature of renewable resources, distributed generation requires suitable control strategies to assure reliability and optimality for the grid. Multi-agent systems are perfect candidates for providing distributed control of distributed generation stations as well as providing reliability and flexibility for the grid integration. The proposed multi-agent energy management system consists of single-type agents who control one or more gird entities, which are represented as generic sub-agent elements. The agent applies one control algorithm across all elements and uses a cost function to evaluate the suitability of the element as a supplier. The behavior set by the agent's user defines which parameters of an element have greater weight in the cost function, which allows the user to specify the preference on suppliers dynamically. This study shows the ability of the multi-agent energy management system to select suppliers according to the selection behavior given by the user. The optimality of the supplier for the required demand is ensured by the cost function based on the parameters of the element.
Resumo:
The and RT0 finite element schemes are among the most promising low order elements for use in unstructured mesh marine and lake models. They are both free of spurious elevation modes, have good dispersive properties and have a relatively low computational cost. In this paper, we derive both finite element schemes in the same unified framework and discuss their respective qualities in terms of conservation, consistency, propagation factor and convergence rate. We also highlight the impact that the local variables placement can have on the model solution. The main conclusion that we can draw is that the choice between elements is highly application dependent. We suggest that the element is better suited to purely hydrodynamical applications while the RT0 element might perform better for hydrological applications that require scalar transport calculations.
Resumo:
Increased penetration of generation and decentralised control are considered to be feasible and effective solution for reducing cost and emissions and hence efficiency associated with power generation and distribution. Distributed generation in combination with the multi-agent technology are perfect candidates for this solution. Pro-active and autonomous nature of multi-agent systems can provide an effective platform for decentralised control whilst improving reliability and flexibility of the grid.