6 resultados para correction methods

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The calculation of interval forecasts for highly persistent autoregressive (AR) time series based on the bootstrap is considered. Three methods are considered for countering the small-sample bias of least-squares estimation for processes which have roots close to the unit circle: a bootstrap bias-corrected OLS estimator; the use of the Roy–Fuller estimator in place of OLS; and the use of the Andrews–Chen estimator in place of OLS. All three methods of bias correction yield superior results to the bootstrap in the absence of bias correction. Of the three correction methods, the bootstrap prediction intervals based on the Roy–Fuller estimator are generally superior to the other two. The small-sample performance of bootstrap prediction intervals based on the Roy–Fuller estimator are investigated when the order of the AR model is unknown, and has to be determined using an information criterion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background It can be argued that adaptive designs are underused in clinical research. We have explored concerns related to inadequate reporting of such trials, which may influence their uptake. Through a careful examination of the literature, we evaluated the standards of reporting of group sequential (GS) randomised controlled trials, one form of a confirmatory adaptive design. Methods We undertook a systematic review, by searching Ovid MEDLINE from the 1st January 2001 to 23rd September 2014, supplemented with trials from an audit study. We included parallel group, confirmatory, GS trials that were prospectively designed using a Frequentist approach. Eligible trials were examined for compliance in their reporting against the CONSORT 2010 checklist. In addition, as part of our evaluation, we developed a supplementary checklist to explicitly capture group sequential specific reporting aspects, and investigated how these are currently being reported. Results Of the 284 screened trials, 68(24%) were eligible. Most trials were published in “high impact” peer-reviewed journals. Examination of trials established that 46(68%) were stopped early, predominantly either for futility or efficacy. Suboptimal reporting compliance was found in general items relating to: access to full trials protocols; methods to generate randomisation list(s); details of randomisation concealment, and its implementation. Benchmarking against the supplementary checklist, GS aspects were largely inadequately reported. Only 3(7%) trials which stopped early reported use of statistical bias correction. Moreover, 52(76%) trials failed to disclose methods used to minimise the risk of operational bias, due to the knowledge or leakage of interim results. Occurrence of changes to trial methods and outcomes could not be determined in most trials, due to inaccessible protocols and amendments. Discussion and Conclusions There are issues with the reporting of GS trials, particularly those specific to the conduct of interim analyses. Suboptimal reporting of bias correction methods could potentially imply most GS trials stopping early are giving biased results of treatment effects. As a result, research consumers may question credibility of findings to change practice when trials are stopped early. These issues could be alleviated through a CONSORT extension. Assurance of scientific rigour through transparent adequate reporting is paramount to the credibility of findings from adaptive trials. Our systematic literature search was restricted to one database due to resource constraints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear adjustment toward long-run price equilibrium relationships in the sugar-ethanol-oil nexus in Brazil is examined. We develop generalized bivariate error correction models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic adjustments are potentially nonlinear functions of the disequilibrium errors. A range of models are estimated using Bayesian Monte Carlo Markov Chain algorithms and compared using Bayesian model selection methods. The results suggest that the long-run drivers of Brazilian sugar prices are oil prices and that there are nonlinearities in the adjustment processes of sugar and ethanol prices to oil price but linear adjustment between ethanol and sugar prices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data assimilation aims to incorporate measured observations into a dynamical system model in order to produce accurate estimates of all the current (and future) state variables of the system. The optimal estimates minimize a variational principle and can be found using adjoint methods. The model equations are treated as strong constraints on the problem. In reality, the model does not represent the system behaviour exactly and errors arise due to lack of resolution and inaccuracies in physical parameters, boundary conditions and forcing terms. A technique for estimating systematic and time-correlated errors as part of the variational assimilation procedure is described here. The modified method determines a correction term that compensates for model error and leads to improved predictions of the system states. The technique is illustrated in two test cases. Applications to the 1-D nonlinear shallow water equations demonstrate the effectiveness of the new procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Producing projections of future crop yields requires careful thought about the appropriate use of atmosphere-ocean global climate model (AOGCM) simulations. Here we describe and demonstrate multiple methods for ‘calibrating’ climate projections using an ensemble of AOGCM simulations in a ‘perfect sibling’ framework. Crucially, this type of analysis assesses the ability of each calibration methodology to produce reliable estimates of future climate, which is not possible just using historical observations. This type of approach could be more widely adopted for assessing calibration methodologies for crop modelling. The calibration methods assessed include the commonly used ‘delta’ (change factor) and ‘nudging’ (bias correction) approaches. We focus on daily maximum temperature in summer over Europe for this idealised case study, but the methods can be generalised to other variables and other regions. The calibration methods, which are relatively easy to implement given appropriate observations, produce more robust projections of future daily maximum temperatures and heat stress than using raw model output. The choice over which calibration method to use will likely depend on the situation, but change factor approaches tend to perform best in our examples. Finally, we demonstrate that the uncertainty due to the choice of calibration methodology is a significant contributor to the total uncertainty in future climate projections for impact studies. We conclude that utilising a variety of calibration methods on output from a wide range of AOGCMs is essential to produce climate data that will ensure robust and reliable crop yield projections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A precipitation downscaling method is presented using precipitation from a general circulation model (GCM) as predictor. The method extends a previous method from monthly to daily temporal resolution. The simplest form of the method corrects for biases in wet-day frequency and intensity. A more sophisticated variant also takes account of flow-dependent biases in the GCM. The method is flexible and simple to implement. It is proposed here as a correction of GCM output for applications where sophisticated methods are not available, or as a benchmark for the evaluation of other downscaling methods. Applied to output from reanalyses (ECMWF, NCEP) in the region of the European Alps, the method is capable of reducing large biases in the precipitation frequency distribution, even for high quantiles. The two variants exhibit similar performances, but the ideal choice of method can depend on the GCM/reanalysis and it is recommended to test the methods in each case. Limitations of the method are found in small areas with unresolved topographic detail that influence higher-order statistics (e.g. high quantiles). When used as benchmark for three regional climate models (RCMs), the corrected reanalysis and the RCMs perform similarly in many regions, but the added value of the latter is evident for high quantiles in some small regions.