8 resultados para contractility

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

CSRP3 or muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein and a mechanosensor in cardiac myocytes. MLP regulation and function was studied in cultured neonatal rat myocytes treated with pharmacological or mechanical stimuli. Either verapamil or BDM decreased nuclear MLP while phenylephrine and cyclic strain increased it. These results suggest that myocyte contractility regulates MLP subcellular localization. When RNA polymerase II was inhibited with alpha-amanitin, nuclear MLP was reduced by 30%. However, when both RNA polymerase I and II were inhibited with actinomycin D, there was a 90% decrease in nuclear MLP suggesting that its nuclear translocation is regulated by both nuclear and nucleolar transcriptional activity. Using cell permeable synthetic peptides containing the putative nuclear localization signal (NLS) of MLP, nuclear import of the protein in cultured rat neonatal myocytes was inhibited. The NLS of MLP also localizes to the nucleolus. Inhibition of nuclear translocation prevented the increased protein accumulation in response to phenylephrine. Furthermore, cyclic strain of myocytes after prior NLS treatment to remove nuclear MLP resulted in disarrayed sarcomeres. Increased protein synthesis and brain natriuretic peptide expression were also prevented suggesting that MLP is required for remodeling of the myo filaments and gene expression. These findings suggest that nucleocytoplasmic shuttling MLP plays an important role in the regulation of the myocyte remodeling and hypertrophy and is required for adaptation to hypertrophic stimuli. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to analyze the function and expression of tachykinins, tachykinin receptors, and neprilysin (NEP) in the mouse uterus. A previous study showed that the uterotonic effects of substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) in estrogen-treated mice were mainly mediated by the tachykinin NK, receptor. In the present work, further contractility studies were undertaken to determine the nature of the receptors mediating responses to tachykinins in uteri of late pregnant mice. Endpoint and real-time quantitative RTPCR were used to analyze the expression of the genes that encode the tachykinins SP/NKA, NKB, and hemokinin-1 (HK-1) (Tac1, Tac2, and Tac4); and the genes that encode tachykinin NK1 (Tacr1), NK2 (Tacr2), and NK3 (Tacr3) receptors in uteri from pregnant and nonpregnant mice. The data show that the mRNAs of tachykinins (particularly NKB and HK-1), tachykinin receptors, and NEP are locally expressed in the mouse uterus, and their expression changes during the estrous cycle and during pregnancy. The tachykinin INK, receptor is the predominant tachykinin receptor in the nonpregnant and early pregnant mouse and may mediate tachykinin-induced uterine contractions in the nonpregnant mouse. The tachykinin NK, receptor is predominant in the late pregnant mouse and is the main receptor mediating uterotonic responses to tachykinins at late pregnancy. The tachykinin NK, receptor is expressed in considerable amounts only in uteri from nonpregnant diestrous animals, and its physiological significance remains to be clarified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T-type Ca2+ channels play diverse roles in tissues such as sensory neurons, vascular smooth muscle, and cancers, where increased expression of the cytoprotective enzyme, heme oxygenase-1 (HO-1) is often found. Here, we report regulation of T-type Ca2+ channels by carbon monoxide (CO) a HO-1 by-product. CO (applied as CORM-2) caused a concentration-dependent, poorly reversible inhibition of all T-type channel isoforms (Cav3.1-3.3, IC50 ∼3 μM) expressed in HEK293 cells, and native T-type channels in NG108-15 cells and primary rat sensory neurons. No recognized CO-sensitive signaling pathway could account for the CO inhibition of Cav3.2. Instead, CO sensitivity was mediated by an extracellular redox-sensitive site, which was also highly sensitive to thioredoxin (Trx). Trx depletion (using auranofin, 2-5 μM) reduced Cav3.2 currents and their CO sensitivity by >50% but increased sensitivity to dithiothreitol ∼3-fold. By contrast, Cav3.1 and Cav3.3 channels, and their sensitivity to CO, were unaffected in identical experiments. Our data propose a novel signaling pathway in which Trx acts as a tonic, endogenous regulator of Cav3.2 channels, while HO-1-derived CO disrupts this regulation, causing channel inhibition. CO modulation of T-type channels has widespread implications for diverse physiological and pathophysiological mechanisms, such as excitability, contractility, and proliferation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental evidence suggests that nitric oxide (NO) and hydrogen sulfide (H2S) signaling pathways are intimately intertwined, with mutual attenuation or potentiation of biological responses in the cardiovascular system and elsewhere. The chemical basis of this interaction is elusive. Moreover, polysulfides recently emerged as potential mediators of H2S/sulfide signaling, but their biosynthesis and relationship to NO remain enigmatic. We sought to characterize the nature, chemical biology, and bioactivity of key reaction products formed in the NO/sulfide system. At physiological pH, we find that NO and sulfide form a network of cascading chemical reactions that generate radical intermediates as well as anionic and uncharged solutes, with accumulation of three major products: nitrosopersulfide (SSNO−), polysulfides, and dinitrososulfite N-nitrosohydroxylamine-N-sulfonate (SULFI/NO), each with a distinct chemical biology and in vitro and in vivo bioactivity. SSNO− is resistant to thiols and cyanolysis, efficiently donates both sulfane sulfur and NO, and potently lowers blood pressure. Polysulfides are both intermediates and products of SSNO− synthesis/decomposition, and they also decrease blood pressure and enhance arterial compliance. SULFI/NO is a weak combined NO/nitroxyl donor that releases mainly N2O on decomposition; although it affects blood pressure only mildly, it markedly increases cardiac contractility, and formation of its precursor sulfite likely contributes to NO scavenging. Our results unveil an unexpectedly rich network of coupled chemical reactions between NO and H2S/sulfide, suggesting that the bioactivity of either transmitter is governed by concomitant formation of polysulfides and anionic S/N-hybrid species. This conceptual framework would seem to offer ample opportunities for the modulation of fundamental biological processes governed by redox switching and sulfur trafficking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell migration is a highly coordinated process and any aberration in the regulatory mechanisms could result in pathological conditions such as cancer. The ability of cancer cells to disseminate to distant sites within the body has made it difficult to treat. Cancer cells also exhibit plasticity that makes them able to interconvert from an elongated, mesenchymal morphology to an amoeboid blebbing form under different physiological conditions. Blebs are spherical membrane protrusions formed by actomyosin-mediated contractility of cortical actin resulting in increased hydrostatic pressure and subsequent detachment of the membrane from the cortex. Tumour cells use blebbing as an alternative mode of migration by squeezing through preexisting gaps in the ECM, and bleb formation is believed to be mediated by the Rho-ROCK signaling pathway. However, the involvement of transmembrane water and ion channels in cell blebbing has not been examined. In the present study, the role of the transmembrane water channels, aquaporins, transmembrane ion transporters and lipid signaling enzymes in the regulation of blebbing was investigated. Using 3D matrigel matrix as an in vitro model to mimic normal extracellular matrix, and a combination of confocal and time-lapse microscopy, it was found that AQP1 knockdown by siRNA ablated blebbing of HT1080 and ACHN cells, and overexpression of AQP1-GFP not only significantly increased bleb size with a corresponding decrease in bleb numbers, but also induced bleb formation in non-blebbing cell lines. Importantly, AQP1 overexpression reduces bleb lifespan due to faster bleb retraction. This novel finding of AQP1-facilitated bleb retraction requires the activity of the Na+/H+ pump as inhibition of the ion transporter, which was found localized to intracellular vesicles, blocked bleb retraction in both cell lines. This study also demonstrated that a differential regulation of cell blebbing by AQP isoforms exists as knockdown of AQP5 had no effect on bleb formation. Data from this study also demonstrates that the lipid signaling PLD2 signals through PA in the LPA-LPAR-Rho-ROCK axis to positively regulate bleb formation in both cell lines. Taken together, this work provides a novel role of AQP1 and Na+/H+ pump in regulation of cell blebbing, and this could be exploited in the development of new therapy to treat cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is becoming apparent that anti-cancer chemotherapies are increasingly associated with cardiac dysfunction or even congestive heart failure (Minotti et al., 2004; Eliott, 2006; Suter et al., 2004; Ren, 2005). Our data suggest that one of the contributing factors to the cardiotoxicitiy of these drugs may be the activation of the AhR-response (including the increased expression of Cyp1a1) and/or other detoxification program in cardiac myocytes themselves. The induction of such responses may have secondary effects (e.g. to increase the level of intracellular oxidative stress), which may influence the contractility or even survival of cardiac myocytes. Furthermore, the specific response of cardiac myocytes, both with respect to the metabolizing enzymes and the export channels, potentially differs from other cells (e.g. we failed to detect any increase in expression of other “classical” AhR-responsive genes, Ugt1a1 and Ugt1a6). This could account for, for example, the observation that doxoribicinol (the 13-hydroxy form of doxorubicin) accumulates in cardiac myocytes but not in hepatocytes (Del Tacca et al., 1985; Olson et al., 1988). Given the vulnerability of the heart and the almost irreparable damage that can be done by severe oxidative stress, further studies would seem to be merited specifically on the effects of chemotherapeutic agents on cardiac myocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The failing heart is characterized by complex tissue remodelling involving increased cardiomyocyte death, and impairment of sarcomere function, metabolic activity, endothelial and vascular function, together with increased inflammation and interstitial fibrosis. For years, therapeutic approaches for heart failure (HF) relied on vasodilators and diuretics which relieve cardiac workload and HF symptoms. The introduction in the clinic of drugs interfering with beta-adrenergic and angiotensin signalling have ameliorated survival by interfering with the intimate mechanism of cardiac compensation. Current therapy, though, still has a limited capacity to restore muscle function fully, and the development of novel therapeutic targets is still an important medical need. Recent progress in understanding the molecular basis of myocardial dysfunction in HF is paving the way for development of new treatments capable of restoring muscle function and targeting specific pathological subsets of LV dysfunction. These include potentiating cardiomyocyte contractility, increasing cardiomyocyte survival and adaptive hypertrophy, increasing oxygen and nutrition supply by sustaining vessel formation, and reducing ventricular stiffness by favourable extracellular matrix remodelling. Here, we consider drugs such as omecamtiv mecarbil, nitroxyl donors, cyclosporin A, SERCA2a (sarcoplasmic/endoplasmic Ca(2 +) ATPase 2a), neuregulin, and bromocriptine, all of which are currently in clinical trials as potential HF therapies, and discuss novel molecular targets with potential therapeutic impact that are in the pre-clinical phases of investigation. Finally, we consider conceptual changes in basic science approaches to improve their translation into successful clinical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Impaired mechanosensing leads to heart failure and we have previously shown that a decreased ratio of cytoplasmic to nuclear CSRP3/Muscle LIM protein (MLP ratio) is associated with a loss of mechanosensitivity. Here we tested whether passive or active stress/strain was important in modulating the MLP ratio and determined whether this correlated with heart function during the transition to failure. We exposed cultured neonatal rat myocytes to 10% cyclic mechanical stretch at 1 Hz, or electrically paced myocytes at 6.8 V (1 Hz) for 48 h. The MLP ratio decreased 50% (P < 0.05, n = 4) only in response to electrical pacing, suggesting impaired mechanosensitivity. Inhibition of contractility with 10 μM blebbistatin resulted in a ∼3 fold increase in the MLP ratio (n = 8, P < 0.05), indicating that myocyte contractility regulates nuclear MLP. Inhibition of histone deacetylase (HDAC) signaling with trichostatin A increased nuclear MLP following passive stretch, suggesting that HDACs block MLP nuclear accumulation. Inhibition of heme-oxygenase1 (HO-1) activity with PPZII blocked MLP nuclear accumulation. To examine how mechanosensitivity changes during the transition to heart failure, we studied a guinea pig model of angiotensin II infusion (400 ng/kg/min) over 12 weeks. Using subcellular fractionation we showed that the MLP ratio increased 88% (n = 4, P < 0.01) during compensated hypertrophy, but decreased significantly during heart failure (P < 0.001, n = 4). The MLP ratio correlated significantly with the E/A ratio (r = 0.71, P < 0.01 n = 12), a clinical measure of diastolic function. These data indicate for the first time that myocyte mechanosensitivity as indicated by the MLP ratio is regulated primarily by myocyte contractility via HO-1 and HDAC signaling.