38 resultados para container transhipment gigantismo terminal NAPA intermodale
em CentAUR: Central Archive University of Reading - UK
Resumo:
-Aminobutyric acid type A (GABAA) receptors, a family of Cl-permeable ion channels, mediate fast synaptic inhibition as postsynaptically enriched receptors for -aminobutyric acid at GABAergic synapses. Here we describe an alternative type of inhibition mediated byGABAA receptors present on neocortical glutamatergic nerve terminals and examine the underlying signaling mechanism(s). By monitoring the activity of the presynaptic CaM kinase II/synapsin I signaling pathway in isolated nerve terminals, we demonstrate that GABAA receptor activation correlated with an increase in basal intraterminal [Ca2]i. Interestingly, this activation of GABAA receptors resulted in a reduction of subsequent depolarization-evoked Ca2 influx, which thereby led to an inhibition of glutamate release. To investigate how the observed GABAA receptor-mediated modulation operates, we determined the sensitivity of this process to the Na-K-2Cl cotransporter 1 antagonist bumetanide, as well as substitution of Ca2 with Ba2, or Ca2/calmodulin inhibition by W7. All of these treatments abolished the modulation by GABAA receptors. Application of selective antagonists of voltage-gated Ca2 channels (VGCCs) revealed that the GABAA receptor-mediated modulation of glutamate release required the specific activity of L- and R-type VGCCs. Crucially, the inhibition of release by these receptors was abolished in terminals isolated from R-type VGCC knock-out mice. Together, our results indicate that a functional coupling between nerve terminal GABAA receptors and L- or R-type VGCCs is mediated by Ca2/calmodulin-dependent signaling. This mechanism provides a GABA-mediated control of glutamatergic synaptic activity by a direct inhibition of glutamate release.
Resumo:
The L-glutamate transporter GLT-1 is an abundant CNS membrane protein of the excitatory amino acid transporter (EAAT) family which controls extracellular L-glutamate levels and is important in limiting excitotoxic neuronal death. Using RT-PCR, we have determined that four mRNAs encoding GLT-1 exist in mouse brain, with the potential to encode four GLT-1 isoforms that differ in their N- and C-termini. We expressed all four isoforms (termed MAST-KREK, MPK-KREK, MAST-DIETCI and MPK-DIETCI according to amino acid sequence) in a range of cell lines and primary astrocytes and show that each isoform can reach the cell surface. In transfected HEK-293 or COS-7 cells, all four isoforms support high-affinity sodium-dependent L-glutamate uptake with identical pharmacological and kinetic properties. Inserting a viral epitope (V5, HA or FLAG) into the second extracellular domain of each isoform allowed co-immunoprecipitation and tr-FRET studies using transfected HEK-293 cells. Here we show for the first time that each of the four isoforms are able to combine to form homomeric and heteromeric assemblies, each of which are expressed at the cell surface of primary astrocytes. After activation of protein kinase C by phorbol ester, V5-tagged GLT-1 is rapidly removed from the cell surface of HEK-293 cells and degraded. This study provides direct biochemical evidence for oligomeric assembly of GLT-1 and reports the development of novel tools to provide insight into the trafficking of GLT-1.
Resumo:
Different stabilising salts and calcium chloride were added to raw milk to evaluate changes in pH, ionic calcium, ethanol stability, casein micelle size and zeta potential. These milk samples were then sterilised at 121 °C for 15 min and stored for 6 months to determine how these properties changed. Addition of tri-sodium citrate (TSC) and di-sodium hydrogen phosphate (DSHP) to milk reduced ionic calcium, increased pH and increased ethanol stability in a concentration-dependent fashion. There was relatively little change in casein micelle size and a slight decrease in zeta potential. Sodium hexametaphosphate (SHMP) also reduced ionic calcium considerably, but its effect on pH was less noticeable. In contrast, sodium dihydrogen phosphate (SDHP) reduced pH but had little effect on ionic calcium. In-container sterilisation of these samples reduced pH, increased ethanol stability and increased casein micelle size, but had variable effects on ionic calcium; for DSHP and SDHP, ionic calcium decreased after sterilisation but, for SHMP, it remained little changed or increased. Milk containing 3.2 mM SHMP and more than 4.5 mM CaCl2 coagulated upon sterilisation. All other samples were stable but there were differences in browning, which increased in intensity as milk pH increased. Heat-induced sediment was not directly related to ionic calcium concentration, so reducing ionic calcium was not the only consideration in terms of improving heat stability. After 6 months of storage, the most acceptable product, in appearance, was that containing SDHP, as this minimised browning during sterilisation and further development of browning during storage.
Resumo:
The primary objective of this research was to determine how the presence of more than one plant and more than one species in a container influence plant quality, particularly when the volume of water given to the container is reduced. Petunia xhybrida 'Hurrah White' and Impatiens 'Cajun Violet' were chosen as typical bedding plant species. Plants were grown in 2 1 containers either under "100% ETp" (i.e., replacing all the water lost by evapotranspiration in the previous 24 h) or under a moisture-restrictive regime of "25% ETp," in which plants received 25% of the "100% ETp" value. An ancillary experiment investigated whether low watering resulted in floral buds being aborted. Results demonstrated that watering requirements of Petunia under "100% ETp" (i.e., replacing all the water lost by evapotranspiration in the previous 24 h) were on average 30% greater than those of Impatiens. However, when two Petunia plants were growing in the same container, the volume of water required to maintain soil moisture content at container capacity was on average only 10% greater than for a single plant. Under a "25% ETp" regime in which plants received 25% of the "100% ETp" value, flower number, plant height, and flower size were reduced by 50%,33%, and 13%,respectively,in Petunia compared with "100% ETp." For example, flower numbers decreased from an average of 71 to 33 flowers per plant in "100% ETp" and "25% ETp," respectively. Petunia plants in the "25% ETp" regime, however, were more efficient at producing both biomass and flowers in relation to the volume of water applied. Petunia plants that experienced both competition from other plants in the container and lower irrigation rates had enhanced efficiency of flower production (i.e., more flowers per unit biomass). For Impatiens, however, the growing of single plants at "25% ETp" was plausible, but the addition of a Petunia plant at "25% ETp" was detrimental to plant quality (Impatiens flower numbers reduced by 75%).
Resumo:
Flavivirus replication is mediated by interactions between complementary ssRNA sequences of the 5'- and 3'-termini that form dsRNA cyclisation stems or panhandles, varying in length, sequence and specific location in the mosquito-borne, tick-borne, non-vectored and non-classified flaviviruses. In this manuscript we manually aligned the flavivirus 5'UTRs and adjacent capsid genes and revealed significantly more homology than has hitherto been identified. Analysis of the alignments revealed that the panhandles represent evolutionary remnants of a long cyclisation domain that probably emerged through duplication of one of the UTR termini.
Resumo:
Conserved among all coronaviruses are four structural proteins: the matrix (M), small envelope (E), and spike (S) proteins that are embedded in the viral membrane and the nucleocapsid phosphoprotein (N), which exists in a ribonucleoprotein complex in the lumen. The N-terminal domain of coronaviral N proteins (N-NTD) provides a scaffold for RNA binding, while the C-terminal domain (N-CTD) mainly acts as oligomerization modules during assembly. The C terminus of the N protein anchors it to the viral membrane by associating with M protein. We characterized the structures of N-NTD from severe acute respiratory syndrome coronavirus (SARS-CoV) in two crystal forms, at 1.17 A (monoclinic) and at 1.85 A (cubic), respectively, resolved by molecular replacement using the homologous avian infectious bronchitis virus (IBV) structure. Flexible loops in the solution structure of SARS-CoV N-NTD are now shown to be well ordered around the beta-sheet core. The functionally important positively charged beta-hairpin protrudes out of the core, is oriented similarly to that in the IBV N-NTD, and is involved in crystal packing in the monoclinic form. In the cubic form, the monomers form trimeric units that stack in a helical array. Comparison of crystal packing of SARS-CoV and IBV N-NTDs suggests a common mode of RNA recognition, but they probably associate differently in vivo during the formation of the ribonucleoprotein complex. Electrostatic potential distribution on the surface of homology models of related coronaviral N-NTDs suggests that they use different modes of both RNA recognition and oligomeric assembly, perhaps explaining why their nucleocapsids have different morphologies.
Resumo:
This paper describes the structure determination of nsp3a, the N-terminal domain of the severe acute respiratory syndrome coronavirus (SARS-CoV) nonstructural protein 3. nsp3a exhibits a ubiquitin-like globular fold of residues 1 to 112 and a flexibly extended glutamic acid-rich domain of residues 113 to 183. In addition to the four beta-strands and two alpha-helices that are common to ubiquitin-like folds, the globular domain of nsp3a contains two short helices representing a feature that has not previously been observed in these proteins. Nuclear magnetic resonance chemical shift perturbations showed that these unique structural elements are involved in interactions with single-stranded RNA. Structural similarities with proteins involved in various cell-signaling pathways indicate possible roles of nsp3a in viral infection and persistence.
Resumo:
Flagellate bacteria such as Escherichia coli and Salmonella enterica serovar Typhimurium typically express 5 to 12 flagellar filaments over their cell surface that rotate in clockwise (CW) and counterclockwise directions. These bacteria modulate their swimming direction towards favorable environments by biasing the direction of flagellar rotation in response to various stimuli. In contrast, Rhodobacter sphaeroides expresses a single subpolar flagellum that rotates only CW and responds tactically by a series of biased stops and starts. Rotor protein FliG transiently links the MotAB stators to the rotor, to power rotation and also has an essential function in flagellar export. In this study, we sought to determine whether the FliG protein confers directionality on flagellar motors by testing the functional properties of R. sphaeroides FliG and a chimeric FliG protein, EcRsFliG (N-terminal and central domains of E. coli FliG fused to an R. sphaeroides FliG C terminus), in an E. coli FliG null background. The EcRsFliG chimera supported flagellar synthesis and bidirectional rotation; bacteria swam and tumbled in a manner qualitatively similar to that of the wild type and showed chemotaxis to amino acids. Thus, the FliG C terminus alone does not confer the unidirectional stop-start character of the R. sphaeroides flagellar motor, and its conformation continues to support tactic, switch-protein interactions in a bidirectional motor, despite its evolutionary history in a bacterium with a unidirectional motor.
Resumo:
In Impatiens balsamina a lack of commitment of the meristem during floral development leads to the continuous requirement for a leaf-derived floral signal. In the absence of this signal the meristem reverts to leaf production. Current models for Arabidopsis state that LEAFY (LFY) is central to the integration of floral signals and regulates flowering partly via interactions with TERMINAL FLOWER1 (TFL1) and AGAMOUS (AG). Here we describe Impatiens homologues of LFY, TFL1 and AG (IbLFY, IbTFL1 and IbAG) that are highly conserved at a sequence level and demonstrate homologous functions when expressed ectopically in transgenic Arabidopsis. We relate the expression patterns of IbTFL1 and IbAG to the control of terminal flowering and floral determinacy in Impatiens. IbTFL1 is involved in controlling the phase of the axillary meristems and is expressed in axillary shoots and axillary meristems which produce inflorescences, but not in axillary flowers. It is not involved in maintaining the terminal meristem in either an inflorescence or indeterminate state. Terminal flowering in Impatiens appears therefore to be controlled by a pathway that uses a different integration system than that regulating the development of axillary flowers and branches. The pattern of ovule production in Impatiens requires the meristem to be maintained after the production of carpels. Consistent with this morphological feature IbAG appears to specify stamen and carpel identity, but is not sufficient to specify meristem determinacy in Impatiens.
Resumo:
The aim of this research was to determine whether shoot growth could be regulated and plant quality improved through two controlled irrigation techniques: Regulated Deficit Irrigation (RDI) or Partial Root Drying (PRD). An additional benefit of such techniques is that they would also improve the efficiency of irrigation application and reduce the volume of water used on commercial nurseries. Results from two ornamental woody plant species (Cotinus and Forsythia) demonstrated that plant quality could be significantly improved when RDI was applied at ≤ 60% of potential evapo-transpiration (ETp). Stomatal closure and reduced leaf and internode growth rates were associated with both the RDI and PRD techniques, but reduced leaf water potential was only recorded in the RDI system. Changes in xylem sap pH and ABA concentrations were correlated with changes in shoot physiology, and thought to be generated by those roots exposed to drying soil. By adopting such controlled irrigation systems on commercial holdings it is estimated that water consumption could be reduced by 50 to 90%.
Amino terminal interaction in the prion protein identified using fusion to green fluorescent protein
Resumo:
In contrast to the well-characterized carboxyl domain, the amino terminal half of the mature cellular prion protein has no defined structure. Here, following fusion of mouse prion protein fragments to green fluorescence protein as a reporter of protein stability, we report extreme variability in fluorescence level that is dependent on the prion fragment expressed. In particular, exposure of the extreme amino terminus in the context of a truncated prion protein molecule led to rapid degradation, whereas the loss of only six amino terminal residues rescued high level fluorescence. Study of the precise endpoints and residue identity associated with high fluorescence suggested a domain within the amino terminal half of the molecule defined by a long-range intramolecular interaction between 23KKRPKP28 and 143DWED146 and dependent upon the anti-parallel beta-sheet ending at residue 169 and normally associated with the structurally defined carboxyl terminal domain. This previously unreported interaction may be significant for understanding prion bioactivity and for structural studies aimed at the complete prion structure.
Resumo:
Terminally protected acyclic tripeptides containing tyrosine residues at both termini self-assemble into nanotubes in crystals through various non-covalent interactions including intermolecular hydrogen bonds. The nanotube has an average internal diameter of 5 angstrom (0.5 nm) and the tubular ensemble is developed through the hydrogen-bonded phenolic-OH side chains of tyrosine (Tyr) residues [Org. Lett. 2004, 6, 4463]. We have synthesized and studied several tripeptides 3-6 to probe the role of tyrosine residues in nanotube structure formation. These peptides either have only one Tyr residue at N- or C-termini or they have one or two terminally located phenylalanine (Phe) residues. These tripeptides failed to form any kind of nanotubular structure in the solid state. Single crystal X-ray diffraction studies of these peptides 3-6 clearly demonstrate that substitution of any one of the terminal Tyr residues in the Boc-Tyr-X-Tyr-OMe (X=VaI or Ile) sequence disrupts the formation of the nanotubular structure indicating that the presence of two terminally located Tyr residues is vital for nanotube formation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
oxovanadium(V) salicylhydroximate complexes, [VO(SHA)(H2O)]center dot 1.58H(2)O (1) and [V3O3(CSHA)(3) (H2O)(3)]center dot 3CH(3)COCH(3) (2) have been synthesized by reaction of VO43- with N-salicyl hydroxamic acid (SHAHS) and N-(5-chlorosalicyl) hydroxamic acid (CSHAH(3)), respectively, in methanol medium. Compound 1 on reaction with pyridine 2,6-dicarboxylic acid (PyDCH2) yields mononuclear complex [VO(SHAH(2))(PyDC)] (3). Treatment of compound 3 with hydrogen peroxide at low pH (2-3) and low temperature (0-5 degrees C) yields a stable oxoperoxovanadium(V) complex H[VO(O-2)(PyDC)(H2O)]center dot 2.5H(2)O (4). All four complexes (1-4) have been characterized by spectroscopic (IR, UV-Vis, V-51 NMR) and single crystal X-ray analyses. Intermolecular hydrogen bonds link complex 1 into hexanuclear clusters consisting of six {VNO5} octahedra surrounded by twelve {VNO5} octahedra to form an annular ring. While the molecular packing in 2 generates a two-dimensional framework hydrogen bonds involving the solvent acetone molecules, the mononuclear complexes 3 and 4 exhibit three-dimensional supramolecular architecture. The compounds 1 and 2 behave as good catalysts for oxygenation of benzylic, aromatic, carbocyclic and aliphatic hydrocarbons to their corresponding hydroxylated and oxygenated products using H2O2 as terminal oxidant; the process affords very good yield and turnover number. The catalysis work shows that cyclohexane is a very easily oxidizable substrate giving the highest turnover number (TON) while n-hexane and n-heptane show limited yield, longer time involvement and lesser TON than other hydrocarbons. (C) 2008 Elsevier Ltd. All rights reserved.