4 resultados para conformational properties
em CentAUR: Central Archive University of Reading - UK
Resumo:
The conformational properties of symmetric flexible diblock polyampholytes are investigated by scaling theory and molecular dynamics simulations. The electrostatically driven coil-globule transition of a symmetric diblock polyampholyte is found to consist of three regimes identified with increasing electrostatic interaction strength. In the first (folding) regime the electrostatic attraction causes the chain to fold through the overlap of the two blocks, while each block is slightly stretched by self-repulsion. The second (weak association or scrambled egg) regime is the classical collapse of the chain into a globule dominated by the fluctuation-induced attractions between oppositely charged sections of the chain. The structure of the formed globule can be represented as a dense packing of the charged chain sections (electrostatic attraction blobs). The third (strong association or ion binding) regime starts with direct binding of oppositely charged monomers (dipole formation), followed by a cascade of multipole formation (quadrupole, hexapole, octupole, etc.), leading to multiplets analogous to those found in ionomers. The existence of the multiplet cascade has also been confirmed in the simulations of solutions of short polymers with only one single charge (either positive or negative) in the middle of each chain. We use scaling theory to estimate the average chain size and the electrostatic correlation length as functions of the chain length, strength of electrostatic interactions, charge fraction, and solvent quality. The theoretically predicted scaling laws of these conformational properties are in very good agreement with our simulation results.
Resumo:
The conformational properties of the hybrid amphiphile formed by the conjugation of a hydrophobic peptide with four phenylalanine (Phe) residues and hydrophilic poly(ethylene glycol), have been investigated using quantum mechanical calculations and atomistic molecular dynamics simulations. The intrinsic conformational preferences of the peptide were examined using the building-up search procedure combined with B3LYP/ 6-31G(d) geometry optimizations, which led to the identification of 78, 78, and 92 minimum energy structures for the peptides containing one, two, and four Phe residues. These peptides tend to adopt regular organizations involving turn-like motifs that define ribbon or helicallike arrangements. Furthermore, calculations indicate that backbone ... side chain interactions involving the N-H of the amide groups and the pi clouds of the aromatic rings play a crucial role in Phe-containing peptides. On the other hand,MD simulations on the complete amphiphile in aqueous solution showed that the polymer fragment rapidly unfolds maximizing the contacts with the polar solvent, even though the hydrophobic peptide reduce the number of waters of hydration with respect to an individual polymer chain of equivalent molecular weight. In spite of the small effect of the peptide in the hydrodynamic properties of the polymer, we conclude that the two counterparts of the amphiphile tend to organize as independent modules.
Resumo:
The effect of hyperbranched macromolecular architectures (dendrimers) upon chirality has received significant attention in recent years in the light of the proposal of amplification of chirality. In particular, several studies have been carried out on the chiroptical properties of dendrimers that contain a chiral core and achiral branches in order to determine if the chirality of the central core can be transmitted to the distal. region of the macromolecule. In addition to interest of a pure academic nature, the presence of such chiral conformational order would be extremely useful in the development of asymmetric catalysts. In this paper, a novel class of chiral dendrimers is described - these perfect hyperbranched macromolecules have been prepared by a convergent route by the coupling of a chiral central core based upon tris(2-aminoethyl)amine and poly(aromatic amide ester) dendritic branches. The chiral properties of these dendrimers have been investigated by detailed optical rotation studies and circular dichroism analysis; the results of these studies are described herein. (C) Wiley-VCH Verlag GmbH Co.
Effect of high-hydrostatic pressure and pH treatments on the emulsification properties of gum arabic
Resumo:
This study investigated the emulsification properties of the native gums and those treated at high pressure (800 MPa) both at their “natural” pH (4.49 and 4.58, respectively) and under “acidic and basic” pH (2.8 and 8.0) conditions. The emulsification behaviour of KLTA gum was found to be superior to that of the GCA gum. High pressure and pH treatment changed the emulsification properties of both gums. The acidic amino acids in gum arabic were shown to play an important role in their emulsification behaviour, and mechanisms of emulsification for the two gums were suggested to be different. The highly “branched” nature of the carbohydrate in GCA gum was also thought to be responsible for the “spreading” of droplet size distributions observed. Coomassie brilliant blue binding was used to indicate conformational changes in protein structure and Ellman’s assay was used to estimate any changes in levels of free thiols present.