32 resultados para computer-based tools
em CentAUR: Central Archive University of Reading - UK
Resumo:
Medical universities and teaching hospitals in Iraq are facing a lack of professional staff due to the ongoing violence that forces them to flee the country. The professionals are now distributed outside the country which reduces the chances for the staff and students to be physically in one place to continue the teaching and limits the efficiency of the consultations in hospitals. A survey was done among students and professional staff in Iraq to find the problems in the learning and clinical systems and how Information and Communication Technology could improve it. The survey has shown that 86% of the participants use the Internet as a learning resource and 25% for clinical purposes while less than 11% of them uses it for collaboration between different institutions. A web-based collaborative tool is proposed to improve the teaching and clinical system. The tool helps the users to collaborate remotely to increase the quality of the learning system as well as it can be used for remote medical consultation in hospitals.
Resumo:
Dietary assessment in older adults can be challenging. The Novel Assessment of Nutrition and Ageing (NANA) method is a touch-screen computer-based food record that enables older adults to record their dietary intakes. The objective of the present study was to assess the relative validity of the NANA method for dietary assessment in older adults. For this purpose, three studies were conducted in which a total of ninety-four older adults (aged 65–89 years) used the NANA method of dietary assessment. On a separate occasion, participants completed a 4 d estimated food diary. Blood and 24 h urine samples were also collected from seventy-six of the volunteers for the analysis of biomarkers of nutrient intake. The results from all the three studies were combined, and nutrient intake data collected using the NANA method were compared against the 4 d estimated food diary and biomarkers of nutrient intake. Bland–Altman analysis showed a reasonable agreement between the dietary assessment methods for energy and macronutrient intake; however, there were small, but significant, differences for energy and protein intake, reflecting the tendency for the NANA method to record marginally lower energy intakes. Significant positive correlations were observed between urinary urea and dietary protein intake using both the NANA and the 4 d estimated food diary methods, and between plasma ascorbic acid and dietary vitamin C intake using the NANA method. The results demonstrate the feasibility of computer-based dietary assessment in older adults, and suggest that the NANA method is comparable to the 4 d estimated food diary, and could be used as an alternative to the food diary for the short-term assessment of an individual’s dietary intake.
Resumo:
This paper discusses how the use of computer-based modelling tools has aided the design of a telemetry unit for use with oil well logging. With the aid of modern computer-based simulation techniques, the new design is capable of operating at data rates of 2.5 times faster than previous designs.
Resumo:
A recent area for investigation into the development of adaptable robot control is the use of living neuronal networks to control a mobile robot. The so-called Animat paradigm comprises a neuronal network (the ‘brain’) connected to an external embodiment (in this case a mobile robot), facilitating potentially robust, adaptable robot control and increased understanding of neural processes. Sensory input from the robot is provided to the neuronal network via stimulation on a number of electrodes embedded in a specialist Petri dish (Multi Electrode Array (MEA)); accurate control of this stimulation is vital. We present software tools allowing precise, near real-time control of electrical stimulation on MEAs, with fast switching between electrodes and the application of custom stimulus waveforms. These Linux-based tools are compatible with the widely used MEABench data acquisition system. Benefits include rapid stimulus modulation in response to neuronal activity (closed loop) and batch processing of stimulation protocols.
Resumo:
Research shows that poor indoor air quality (IAQ) in school buildings can cause a reduction in the students’ performance assessed by short-term computer-based tests; whereas good air quality in classrooms can enhance children's concentration and also teachers’ productivity. Investigation of air quality in classrooms helps us to characterise pollutant levels and implement corrective measures. Outdoor pollution, ventilation equipment, furnishings, and human activities affect IAQ. In school classrooms, the occupancy density is high (1.8–2.4 m2/person) compared to offices (10 m2/person). Ventilation systems expend energy and there is a trend to save energy by reducing ventilation rates. We need to establish the minimum acceptable level of fresh air required for the health of the occupants. This paper describes a project, which will aim to investigate the effect of IAQ and ventilation rates on pupils’ performance and health using psychological tests. The aim is to recommend suitable ventilation rates for classrooms and examine the suitability of the air quality guidelines for classrooms. The air quality, ventilation rates and pupils’ performance in classrooms will be evaluated in parallel measurements. In addition, Visual Analogue Scales will be used to assess subjective perception of the classroom environment and SBS symptoms. Pupil performance will be measured with Computerised Assessment Tests (CAT), and Pen and Paper Performance Tasks while physical parameters of the classroom environment will be recorded using an advanced data logging system. A total number of 20 primary schools in the Reading area are expected to participate in the present investigation, and the pupils participating in this study will be within the age group of 9–11 years. On completion of the project, based on the overall data recommendations for suitable ventilation rates for schools will be formulated.
Resumo:
Research shows that poor indoor air quality in school buildings can cause a reduction in the students' performance assessed by short term computer based tests; whereas good air quality in classrooms can enhance children's concentration and also teachers' productivity. Investigation of air quality in classrooms helps us to characterise pollutant levels and implement corrective measures. Outdoor pollution, ventilation equipment, furnishings, and human activities affect indoor air quality. In school classrooms the occupancy density is high (1.8 to 2.4 m(2)/person) compared to offices (10 m(2) /person). Ventilation systems expend energy and there is a trend to save energy by reducing ventilation rates. We need to establish the minimum acceptable level of fresh air required for the health of the occupants. This paper describes a project which will aim to investigate the effect of indoor air quality and ventilation rates on pupils' performance and health using psychological tests. The aim is to recommend suitable ventilation rates for classrooms and examine the suitability of the air quality guidelines for classrooms.
Resumo:
Mathematical models devoted to different aspects of building studies and brought about a significant shift in the way we view buildings. From this background a new definition of building has emerged known as intelligent building that requires integration of a variety of computer-based complex systems. Research relevant to intelligent continues to grow at a much faster pace. This paper is a review of different mathematical models described in literature, which make use of different mathematical methodologies, and are intended for intelligent building studies without complex mathematical details. Models are discussed under a wide classification. Mathematical abstract level of the applied models is detailed and integrated with its literature. The goal of this paper is to present a comprehensive account of the achievements and status of mathematical models in intelligent building research. and to suggest future directions in models.
Resumo:
Research shows that poor indoor air quality (IAQ) in school buildings can cause a reduction in the students' performance assessed by short-term computer-based tests: whereas good air quality in classrooms can enhance children's concentration and also teachers' productivity. Investigation of air quality in classrooms helps us to characterise pollutant levels and implement corrective measures. Outdoor pollution, ventilation equipment, furnishings, and human activities affect IAQ. In school classrooms, the occupancy density is high (1.8-2.4m(2)/person) compared to offices (10 m(2)/person). Ventilation systems expend energy and there is a trend to save energy by reducing ventilation rates. We need to establish the minimum acceptable level of fresh air required for the health of the occupants. This paper describes a project, which will aim to investigate the effect of IAQ and ventilation rates on pupils' performance and health using psychological tests. The aim is to recommend suitable ventilation rates for classrooms and examine the suitability of the air quality guidelines for classrooms. The air quality, ventilation rates and pupils' performance in classrooms will be evaluated in parallel measurements. In addition, Visual Analogue Scales will be used to assess subjective perception of the classroom environment and SBS symptoms. Pupil performance will be measured with Computerised Assessment Tests (CAT), and Pen and Paper Performance Tasks while physical parameters of the classroom environment will be recorded using an advanced data logging system. A total number of 20 primary schools in the Reading area are expected to participate in the present investigation, and the pupils participating in this study will be within the age group of 9-11 years. On completion of the project, based oil the overall data recommendations for suitable ventilation rates for schools will be formulated. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The Java language first came to public attention in 1995. Within a year, it was being speculated that Java may be a good language for parallel and distributed computing. Its core features, including being objected oriented and platform independence, as well as having built-in network support and threads, has encouraged this view. Today, Java is being used in almost every type of computer-based system, ranging from sensor networks to high performance computing platforms, and from enterprise applications through to complex research-based.simulations. In this paper the key features that make Java a good language for parallel and distributed computing are first discussed. Two Java-based middleware systems, namely MPJ Express, an MPI-like Java messaging system, and Tycho, a wide-area asynchronous messaging framework with an integrated virtual registry are then discussed. The paper concludes by highlighting the advantages of using Java as middleware to support distributed applications.
Resumo:
Acquiring a mechanistic understanding of the role of the biotic feedbacks on the links between atmospheric CO2 concentrations and temperature is essential for trustworthy climate predictions. Currently, computer based simulations are the only available tool to estimate the global impact of the biotic feedbacks on future atmospheric CO2 and temperatures. Here we propose an alternative and complementary approaches by using materially closed and energetically open analogue/physical models of the carbon cycle. We argue that there is potential in using a materially closed approach to improve our understanding of the magnitude and sign of many biotic feedbacks, and that recent technological advance make this feasible. We also suggest how such systems could be designed and discuss the advantages and limitations of establishing physical models of the global carbon cycle.
Resumo:
Traditionally representation of competencies has been very difficult using computer-based techniques. This paper introduces competencies, how they are represented, and the related concept of competency frameworks and the difficulties in using traditional ontology techniques to formalise them. A “vaguely” formalised framework has been developed within the EU project TRACE and is presented. The framework can be used to represent different competencies and competency frameworks. Through a case study using an example from the IT sector, it is shown how these can be used by individuals and organisations to specify their individual competency needs. Furthermore it is described how these representations are used for comparisons between different specifications applying ontologies and ontology toolsets. The end result is a comparison that is not binary, but tertiary, providing “definite matches”, possible / partial matches, and “no matches” using a “traffic light” analogy.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
THE clinical skills of medical professionals rely strongly on the sense of touch, combined with anatomical and diagnostic knowledge. Haptic exploratory procedures allow the expert to detect anomalies via gross and fine palpation, squeezing, and contour following. Haptic feedback is also key to medical interventions, for example when an anaesthetist inserts an epidural needle, a surgeon makes an incision, a dental surgeon drills into a carious lesion, or a veterinarian sutures a wound. Yet, current trends in medical technology and training methods involve less haptic feedback to clinicians and trainees. For example, minimally invasive surgery removes the direct contact between the patient and clinician that gives rise to natural haptic feedback, and furthermore introduces scaling and rotational transforms that confuse the relationship between movements of the hand and the surgical site. Similarly, it is thought that computer-based medical simulation and training systems require high-resolution and realistic haptic feedback to the trainee for significant training transfer to occur. The science and technology of haptics thus has great potential to affect the performance of medical procedures and learning of clinical skills. This special section is about understanding
Resumo:
In any wide-area distributed system there is a need to communicate and interact with a range of networked devices and services ranging from computer-based ones (CPU, memory and disk), to network components (hubs, routers, gateways) and specialised data sources (embedded devices, sensors, data-feeds). In order for the ensemble of underlying technologies to provide an environment suitable for virtual organisations to flourish, the resources that comprise the fabric of the Grid must be monitored in a seamless manner that abstracts away from the underlying complexity. Furthermore, as various competing Grid middleware offerings are released and evolve, an independent overarching monitoring service should act as a corner stone that ties these systems together. GridRM is a standards-based approach that is independent of any given middleware and that can utilise legacy and emerging resource-monitoring technologies. The main objective of the project is to produce a standardised and extensible architecture that provides seamless mechanisms to interact with native monitoring agents across heterogeneous resources.