74 resultados para component architecture
em CentAUR: Central Archive University of Reading - UK
Resumo:
Equilibrium phase diagrams are calculated for a selection of two-component block copolymer architectures using self-consistent field theory (SCFT). The topology of the phase diagrams is relatively unaffected by differences in architecture, but the phase boundaries shift significantly in composition. The shifts are consistent with the decomposition of architectures into constituent units as proposed by Gido and coworkers, but there are significant quantitative deviations from this principle in the intermediate-segregation regime. Although the complex phase windows continue to be dominated by the gyroid (G) phase, the regions of the newly discovered Fddd (O^70) phase become appreciable for certain architectures and the perforated-lamellar (PL) phase becomes stable when the complex phase windows shift towards high compositional asymmetry.
Resumo:
The environmental and financial costs of using inorganic phosphate fertilizers to maintain crop yield and quality are high. Breeding crops that acquire and use phosphorus (P) more efficiently could reduce these costs. The variation in shoot P concentration (shoot-P) and various measures of P use efficiency (PUE) were quantified among 355 Brassica oleracea L. accessions, 74 current commercial cultivars, and 90 doubled haploid (DH) mapping lines from a reference genetic mapping population. Accessions were grown at two or more external P concentrations in glasshouse experiments; commercial and DH accessions were also grown in replicated field experiments. Within the substantial species-wide diversity observed for shoot-P and various measures of PUE in B. oleracea, current commercial cultivars have greater PUE than would be expected by chance. This may be a consequence of breeding for increased yield, which is a significant component of most measures of PUE, or early establishment. Root development and architecture correlate with PUE; in particular, lateral root number, length, and growth rate. Significant quantitative trait loci associated with shoot-P and PUE occur on chromosomes C3 and C7. These data provide information to initiate breeding programmes to improve PUE in B. oleracea.
Resumo:
At its most fundamental, cognition as displayed by biological agents (such as humans) may be said to consist of the manipulation and utilisation of memory. Recent discussions in the field of cognitive robotics have emphasised the role of embodiment and the necessity of a value or motivation for autonomous behaviour. This work proposes a computational architecture – the Memory-Based Cognitive (MBC) architecture – based upon these considerations for the autonomous development of control of a simple mobile robot. This novel architecture will permit the exploration of theoretical issues in cognitive robotics and animal cognition. Furthermore, the biological inspiration of the architecture is anticipated to result in a mobile robot controller which displays adaptive behaviour in unknown environments.
Resumo:
The intelligent controlling mechanism of a typical mobile robot is usually a computer system. Research is however now ongoing in which biological neural networks are being cultured and trained to act as the brain of an interactive real world robot – thereby either completely replacing or operating in a cooperative fashion with a computer system. Studying such neural systems can give a distinct insight into biological neural structures and therefore such research has immediate medical implications. The principal aims of the present research are to assess the computational and learning capacity of dissociated cultured neuronal networks with a view to advancing network level processing of artificial neural networks. This will be approached by the creation of an artificial hybrid system (animat) involving closed loop control of a mobile robot by a dissociated culture of rat neurons. This paper details the components of the overall animat closed loop system architecture and reports on the evaluation of the results from preliminary real-life and simulated robot experiments.
Resumo:
The piriform cortex (PC) is highly prone to epileptogenesis, particularly in immature animals, where decreased muscarinic modulation of PC intrinsic fibre excitatory neurotransmission is implicated as a likely cause. However, whether higher levels of acetylcholine (ACh) release occur in immature vs. adult PC remains unclear. We investigated this using in vitro extracellular electrophysiological recording techniques. Intrinsic fibre-evoked extracellular field potentials (EFPs) were recorded from layers II to III in PC brain slices prepared from immature (P14-18) and adult (P>40) rats. Adult and immature PC EFPs were suppressed by eserine (1muM) or neostigmine (1muM) application, with a greater suppression in immature ( approximately 40%) than adult ( approximately 30%) slices. Subsequent application of atropine (1muM) reversed EFP suppression, producing supranormal ( approximately 12%) recovery in adult slices, suggesting that suppression was solely muscarinic ACh receptor-mediated and that some 'basal' cholinergic 'tone' was present. Conversely, atropine only partially reversed anticholinesterase effects in immature slices, suggesting the presence of additional non-muscarinic modulation. Accordingly, nicotine (50muM) caused immature field suppression ( approximately 30%) that was further enhanced by neostigmine, whereas it had no effect on adult EFPs. Unlike atropine, nicotinic antagonists, mecamylamine and methyllycaconitine, induced immature supranormal field recovery ( approximately 20%) following anticholinesterase-induced suppression (with no effect on adult slices), confirming that basal cholinergic 'tone' was also present. We suggest that nicotinic inhibitory cholinergic modulation occurs in the immature rat PC intrinsic excitatory fibre system, possibly to complement the existing, weak muscarinic modulation, and could be another important developmentally regulated system governing immature PC susceptibility towards epileptogenesis.
Resumo:
Cannabis is a potential treatment for epilepsy, although the few human studies supporting this use have proved inconclusive. Previously, we showed that a standardized cannabis extract (SCE), isolated Delta(9)-tetrahydrocannabinol (Delta(9)-THC), and even Delta(9)-THC-free SCE inhibited muscarinic agonist-induced epileptiform bursting in rat olfactory cortical brain slices, acting via CB1 receptors. The present work demonstrates that although Delta(9)-THC (1microM) significantly depressed evoked depolarizing postsynaptic potentials (PSPs) in rat olfactory cortex neurones, both SCE and Delta(9)-THC-free SCE significantly potentiated evoked PSPs (all results were fully reversed by the CB1 receptor antagonist SR141716A, 1microM); interestingly, the potentiation by Delta(9)-THC-free SCE was greater than that produced by SCE. On comparing the effects of Delta(9)-THC-free SCE upon evoked PSPs and artificial PSPs (aPSPs; evoked electrotonically following brief intracellular current injection), PSPs were enhanced, whereas aPSPs were unaffected, suggesting that the effect was not due to changes in background input resistance. Similar recordings made using CB1 receptor-deficient knockout mice (CB1(-/-)) and wild-type littermate controls revealed cannabinoid or extract-induced changes in membrane resistance, cell excitability and synaptic transmission in wild-type mice that were similar to those seen in rat neurones, but no effect on these properties were seen in CB1(-/-) cells. It appears that the unknown extract constituent(s) effects over-rode the suppressive effects of Delta(9)-THC on excitatory neurotransmitter release, which may explain some patients' preference for herbal cannabis rather than isolated Delta(9)-THC (due to attenuation of some of the central Delta(9)-THC side effects) and possibly account for the rare incidence of seizures in some individuals taking cannabis recreationally
Resumo:
The complexity inherent in climate data makes it necessary to introduce more than one statistical tool to the researcher to gain insight into the climate system. Empirical orthogonal function (EOF) analysis is one of the most widely used methods to analyze weather/climate modes of variability and to reduce the dimensionality of the system. Simple structure rotation of EOFs can enhance interpretability of the obtained patterns but cannot provide anything more than temporal uncorrelatedness. In this paper, an alternative rotation method based on independent component analysis (ICA) is considered. The ICA is viewed here as a method of EOF rotation. Starting from an initial EOF solution rather than rotating the loadings toward simplicity, ICA seeks a rotation matrix that maximizes the independence between the components in the time domain. If the underlying climate signals have an independent forcing, one can expect to find loadings with interpretable patterns whose time coefficients have properties that go beyond simple noncorrelation observed in EOFs. The methodology is presented and an application to monthly means sea level pressure (SLP) field is discussed. Among the rotated (to independence) EOFs, the North Atlantic Oscillation (NAO) pattern, an Arctic Oscillation–like pattern, and a Scandinavian-like pattern have been identified. There is the suggestion that the NAO is an intrinsic mode of variability independent of the Pacific.
Resumo:
The present paper explores the 'farmer' effect in economic advantages often claimed for Bt cotton varieties (those with the endotoxin gene from Bacillus thuringiensis conferring resistance to some insect pests) compared to non-Bt varieties. Critics claim that much of the yield advantage of Bt cotton could be due to the fact that farmers adopting the technology are in a better position to provide inputs and management and so much of any claimed Bt advantage is an artefact rather than reflecting a real advantage of the variety per se. The present paper provides an in-depth analysis of 63 non-adopting and 94 adopting households of Bt cotton in Jalgaon, Maharashtra State, India, spanning the seasons 2002 and 2003. Results suggest that Bt adopters are indeed different from non-adopters in a number of ways. Adopters appear to specialize more on cotton (at least in terms of the land area they devote to the crop), spend more money on irrigation and grow well-performing non-Bt varieties of cotton (Bunny). Taking gross margin as the basis for comparison, Bt plots had 2.5 times the gross margin of non-Bt plots in both seasons. If only adopters are considered then the gross margin advantage of Bt plots reduces to 1.6 times that of non-Bt plots. This is still a significant advantage and could well explain the popularity of Bt in Maharashtra. However, it is clear that great care needs to be taken with such comparative studies.
Resumo:
In this paper we present an architecture for network and applications management, which is based on the Active Networks paradigm and shows the advantages of network programmability. The stimulus to develop this architecture arises from an actual need to manage a cluster of active nodes, where it is often required to redeploy network assets and modify nodes connectivity. In our architecture, a remote front-end of the managing entity allows the operator to design new network topologies, to check the status of the nodes and to configure them. Moreover, the proposed framework allows to explore an active network, to monitor the active applications, to query each node and to install programmable traps. In order to take advantage of the Active Networks technology, we introduce active SNMP-like MIBs and agents, which are dynamic and programmable. The programmable management agents make tracing distributed applications a feasible task. We propose a general framework that can inter-operate with any active execution environment. In this framework, both the manager and the monitor front-ends communicate with an active node (the Active Network Access Point) through the XML language. A gateway service performs the translation of the queries from XML to an active packet language and injects the code in the network. We demonstrate the implementation of an active network gateway for PLAN (Packet Language for Active Networks) in a forty active nodes testbed. Finally, we discuss an application of the active management architecture to detect the causes of network failures by tracing network events in time.
Resumo:
A systematic modular approach to investigate the respective roles of the ocean and atmosphere in setting El Niño characteristics in coupled general circulation models is presented. Several state-of-the-art coupled models sharing either the same atmosphere or the same ocean are compared. Major results include 1) the dominant role of the atmosphere model in setting El Niño characteristics (periodicity and base amplitude) and errors (regularity) and 2) the considerable improvement of simulated El Niño power spectra—toward lower frequency—when the atmosphere resolution is significantly increased. Likely reasons for such behavior are briefly discussed. It is argued that this new modular strategy represents a generic approach to identifying the source of both coupled mechanisms and model error and will provide a methodology for guiding model improvement.