60 resultados para complexity regularization
em CentAUR: Central Archive University of Reading - UK
Resumo:
An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.
Resumo:
With the rapid development in technology over recent years, construction, in common with many areas of industry, has become increasingly complex. It would, therefore, seem to be important to develop and extend the understanding of complexity so that industry in general and in this case the construction industry can work with greater accuracy and efficiency to provide clients with a better service. This paper aims to generate a definition of complexity and a method for its measurement in order to assess its influence upon the accuracy of the quantity surveying profession in UK new build office construction. Quantitative data came from an analysis of twenty projects of varying size and value and qualitative data came from interviews with professional quantity surveyors. The findings highlight the difficulty in defining and measuring project complexity. The correlation between accuracy and complexity was not straightforward, being subjected to many extraneous variables, particularly the impact of project size. Further research is required to develop a better measure of complexity. This is in order to improve the response of quantity surveyors, so that an appropriate level of effort can be applied to individual projects, permitting greater accuracy and enabling better resource planning within the profession.
Resumo:
1. Although the importance of plant community assemblages in structuring invertebrate assemblages is well known, the role that architectural complexity plays is less well understood. In particular, direct empirical data for a range of invertebrate taxa showing how functional groups respond to plant architecture is largely absent from the literature. 2. The significance of sward architectural complexity in determining the species richness of predatory and phytophagous functional groups of spiders, beetles, and true bugs, sampled from 135 field margin plots over 2 years was tested. The present study compares the relative importance of sward architectural complexity to that of plant community assemblage. 3. Sward architectural complexity was found to be a determinant of species richness for all phytophagous and predatory functional groups. When individual species responses were investigated, 62.5% of the spider and beetle species, and 50.0% of the true bugs responded to sward architectural complexity. 4. Interactions between sward architectural complexity and plant community assemblage indicate that the number of invertebrate species supported by the plant community alone could be increased by modification of sward architecture. Management practices could therefore play a key role in diversifying the architectural structure of existing floral assemblages for the benefit of invertebrate assemblages. 5. The contrasting effects of sward architecture on invertebrate functional groups characterised by either direct (phytophagous species) or indirect (predatory species) dependence on plant communities is discussed. It is suggested that for phytophagous taxa, plant community assemblage alone is likely to be insufficient to ensure successful species colonisation or persistence without appropriate development of sward architecture.
Resumo:
This paper presents an efficient construction algorithm for obtaining sparse kernel density estimates based on a regression approach that directly optimizes model generalization capability. Computational efficiency of the density construction is ensured using an orthogonal forward regression, and the algorithm incrementally minimizes the leave-one-out test score. A local regularization method is incorporated naturally into the density construction process to further enforce sparsity. An additional advantage of the proposed algorithm is that it is fully automatic and the user is not required to specify any criterion to terminate the density construction procedure. This is in contrast to an existing state-of-art kernel density estimation method using the support vector machine (SVM), where the user is required to specify some critical algorithm parameter. Several examples are included to demonstrate the ability of the proposed algorithm to effectively construct a very sparse kernel density estimate with comparable accuracy to that of the full sample optimized Parzen window density estimate. Our experimental results also demonstrate that the proposed algorithm compares favorably with the SVM method, in terms of both test accuracy and sparsity, for constructing kernel density estimates.
Resumo:
The paper introduces an efficient construction algorithm for obtaining sparse linear-in-the-weights regression models based on an approach of directly optimizing model generalization capability. This is achieved by utilizing the delete-1 cross validation concept and the associated leave-one-out test error also known as the predicted residual sums of squares (PRESS) statistic, without resorting to any other validation data set for model evaluation in the model construction process. Computational efficiency is ensured using an orthogonal forward regression, but the algorithm incrementally minimizes the PRESS statistic instead of the usual sum of the squared training errors. A local regularization method can naturally be incorporated into the model selection procedure to further enforce model sparsity. The proposed algorithm is fully automatic, and the user is not required to specify any criterion to terminate the model construction procedure. Comparisons with some of the existing state-of-art modeling methods are given, and several examples are included to demonstrate the ability of the proposed algorithm to effectively construct sparse models that generalize well.
Resumo:
In models of complicated physical-chemical processes operator splitting is very often applied in order to achieve sufficient accuracy as well as efficiency of the numerical solution. The recently rediscovered weighted splitting schemes have the great advantage of being parallelizable on operator level, which allows us to reduce the computational time if parallel computers are used. In this paper, the computational times needed for the weighted splitting methods are studied in comparison with the sequential (S) splitting and the Marchuk-Strang (MSt) splitting and are illustrated by numerical experiments performed by use of simplified versions of the Danish Eulerian model (DEM).
Resumo:
In this work we study the computational complexity of a class of grid Monte Carlo algorithms for integral equations. The idea of the algorithms consists in an approximation of the integral equation by a system of algebraic equations. Then the Markov chain iterative Monte Carlo is used to solve the system. The assumption here is that the corresponding Neumann series for the iterative matrix does not necessarily converge or converges slowly. We use a special technique to accelerate the convergence. An estimate of the computational complexity of Monte Carlo algorithm using the considered approach is obtained. The estimate of the complexity is compared with the corresponding quantity for the complexity of the grid-free Monte Carlo algorithm. The conditions under which the class of grid Monte Carlo algorithms is more efficient are given.
Resumo:
A new robust neurofuzzy model construction algorithm has been introduced for the modeling of a priori unknown dynamical systems from observed finite data sets in the form of a set of fuzzy rules. Based on a Takagi-Sugeno (T-S) inference mechanism a one to one mapping between a fuzzy rule base and a model matrix feature subspace is established. This link enables rule based knowledge to be extracted from matrix subspace to enhance model transparency. In order to achieve maximized model robustness and sparsity, a new robust extended Gram-Schmidt (G-S) method has been introduced via two effective and complementary approaches of regularization and D-optimality experimental design. Model rule bases are decomposed into orthogonal subspaces, so as to enhance model transparency with the capability of interpreting the derived rule base energy level. A locally regularized orthogonal least squares algorithm, combined with a D-optimality used for subspace based rule selection, has been extended for fuzzy rule regularization and subspace based information extraction. By using a weighting for the D-optimality cost function, the entire model construction procedure becomes automatic. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.