7 resultados para cognitive modeling
em CentAUR: Central Archive University of Reading - UK
Resumo:
Inverse problems for dynamical system models of cognitive processes comprise the determination of synaptic weight matrices or kernel functions for neural networks or neural/dynamic field models, respectively. We introduce dynamic cognitive modeling as a three tier top-down approach where cognitive processes are first described as algorithms that operate on complex symbolic data structures. Second, symbolic expressions and operations are represented by states and transformations in abstract vector spaces. Third, prescribed trajectories through representation space are implemented in neurodynamical systems. We discuss the Amari equation for a neural/dynamic field theory as a special case and show that the kernel construction problem is particularly ill-posed. We suggest a Tikhonov-Hebbian learning method as regularization technique and demonstrate its validity and robustness for basic examples of cognitive computations.
Resumo:
Proponents of the “fast and frugal” approach to decision-making suggest that inferential judgments are best made on the basis of limited information. For example, if only one of two cities is recognized and the task is to judge which city has the larger population, the recognition heuristic states that the recognized city should be selected. In preference choices with >2 options, it is also standard to assume that a “consideration set”, based upon some simple criterion, is established to reduce the options available. A multinomial processing tree model is outlined which provides the basis for estimating the extent to which recognition is used as a criterion in establishing a consideration set for inferential judgments.
Resumo:
The nicotinic Acetylcholine Receptor (nAChR) is the major class of neurotransmitter receptors that is involved in many neurodegenerative conditions such as schizophrenia, Alzheimer's and Parkinson's diseases. The N-terminal region or Ligand Binding Domain (LBD) of nAChR is located at pre- and post-synaptic nervous system, which mediates synaptic transmission. nAChR acts as the drug target for agonist and competitive antagonist molecules that modulate signal transmission at the nerve terminals. Based on Acetylcholine Binding Protein (AChBP) from Lymnea stagnalis as the structural template, the homology modeling approach was carried out to build three dimensional model of the N-terminal region of human alpha(7)nAChR. This theoretical model is an assembly of five alpha(7) subunits with 5 fold axis symmetry, constituting a channel, with the binding picket present at the interface region of the subunits. alpha-netlrotoxin is a potent nAChR competitive antagonist that readily blocks the channel resulting in paralysis. The molecular interaction of alpha-Bungarotoxin, a long chain alpha-neurotoxin from (Bungarus multicinctus) and human alpha(7)nAChR seas studied. Agonists such as acetylcholine, nicotine, which are used in it diverse array of biological activities, such as enhancements of cognitive performances, were also docked with the theoretical model of human alpha(7)nAChR. These docked complexes were analyzed further for identifying the crucial residues involved in interaction. These results provide the details of interaction of agonists and competitive antagonists with three dimensional model of the N-terminal region of human alpha(7)nAChR and thereby point to the design of novel lead compounds.
Resumo:
This paper proposes and demonstrates an approach, Skilloscopy, to the assessment of decision makers. In an increasingly sophisticated, connected and information-rich world, decision making is becoming both more important and more difficult. At the same time, modelling decision-making on computers is becoming more feasible and of interest, partly because the information-input to those decisions is increasingly on record. The aims of Skilloscopy are to rate and rank decision makers in a domain relative to each other: the aims do not include an analysis of why a decision is wrong or suboptimal, nor the modelling of the underlying cognitive process of making the decisions. In the proposed method a decision-maker is characterised by a probability distribution of their competence in choosing among quantifiable alternatives. This probability distribution is derived by classic Bayesian inference from a combination of prior belief and the evidence of the decisions. Thus, decision-makers’ skills may be better compared, rated and ranked. The proposed method is applied and evaluated in the gamedomain of Chess. A large set of games by players across a broad range of the World Chess Federation (FIDE) Elo ratings has been used to infer the distribution of players’ rating directly from the moves they play rather than from game outcomes. Demonstration applications address questions frequently asked by the Chess community regarding the stability of the Elo rating scale, the comparison of players of different eras and/or leagues, and controversial incidents possibly involving fraud. The method of Skilloscopy may be applied in any decision domain where the value of the decision-options can be quantified.
Resumo:
This research examined how motivation (perceived control, intrinsic motivation, and extrinsic motivation), cognitive learning strategies (deep and surface strategies), and intelligence jointly predict long-term growth in students' mathematics achievement over 5 years. Using longitudinal data from six annual waves (Grades 5 through 10; Mage = 11.7 years at baseline; N = 3,530), latent growth curve modeling was employed to analyze growth in achievement. Results showed that the initial level of achievement was strongly related to intelligence, with motivation and cognitive strategies explaining additional variance. In contrast, intelligence had no relation with the growth of achievement over years, whereas motivation and learning strategies were predictors of growth. These findings highlight the importance of motivation and learning strategies in facilitating adolescents' development of mathematical competencies.
Resumo:
The Complex Adaptive Systems, Cognitive Agents and Distributed Energy (CASCADE) project is developing a framework based on Agent Based Modelling (ABM). The CASCADE Framework can be used both to gain policy and industry relevant insights into the smart grid concept itself and as a platform to design and test distributed ICT solutions for smart grid based business entities. ABM is used to capture the behaviors of diff erent social, economic and technical actors, which may be defi ned at various levels of abstraction. It is applied to understanding their interactions and can be adapted to include learning processes and emergent patterns. CASCADE models ‘prosumer’ agents (i.e., producers and/or consumers of energy) and ‘aggregator’ agents (e.g., traders of energy in both wholesale and retail markets) at various scales, from large generators and Energy Service Companies down to individual people and devices. The CASCADE Framework is formed of three main subdivisions that link models of electricity supply and demand, the electricity market and power fl ow. It can also model the variability of renewable energy generation caused by the weather, which is an important issue for grid balancing and the profi tability of energy suppliers. The development of CASCADE has already yielded some interesting early fi ndings, demonstrating that it is possible for a mediating agent (aggregator) to achieve stable demandfl attening across groups of domestic households fi tted with smart energy control and communication devices, where direct wholesale price signals had previously been found to produce characteristic complex system instability. In another example, it has demonstrated how large changes in supply mix can be caused even by small changes in demand profi le. Ongoing and planned refi nements to the Framework will support investigation of demand response at various scales, the integration of the power sector with transport and heat sectors, novel technology adoption and diffusion work, evolution of new smart grid business models, and complex power grid engineering and market interactions.