33 resultados para coexistence
em CentAUR: Central Archive University of Reading - UK
Resumo:
Globally there have been a number of concerns about the development of genetically modified crops many of which relate to the implications of gene flow at various levels. In Europe these concerns have led the European Union (EU) to promote the concept of 'coexistence' to allow the freedom to plant conventional and genetically modified (GM) varieties but to minimise the presence of transgenic material within conventional crops. Should a premium for non-GM varieties emerge on the market, the presence of transgenes would generate a 'negative externality' to conventional growers. The establishment of maximum tolerance level for the adventitious presence of GM material in conventional crops produces a threshold effect in the external costs. The existing literature suggests that apart from the biological characteristics of the plant under consideration (e.g. self-pollination rates, entomophilous species, anemophilous species, etc.), gene flow at the landscape level is affected by the relative size of the source and sink populations and the spatial arrangement of the fields in the landscape. In this paper, we take genetically modified herbicide tolerant oilseed rape (GM HT OSR) as a model crop. Starting from an individual pollen dispersal function, we develop a spatially explicit numerical model in order to assess the effect of the size of the source/sink populations and the degree of spatial aggregation on the extent of gene flow into conventional OSR varieties under two alternative settings. We find that when the transgene presence in conventional produce is detected at the field level, the external cost will increase with the size of the source area and with the level of spatial disaggregation. on the other hand when the transgene presence is averaged among all conventional fields in the landscape (e.g. because of grain mixing before detection), the external cost will only depend on the relative size of the source area. The model could readily be incorporated into an economic evaluation of policies to regulate adoption of GM HT OSR. (c) 2007 Elsevier B.V. All rights reserved.
Biosecurity in agriculture: an economic analysis of coexistence of professional and hobby production
Resumo:
One component of biosecurity is protection against invasive alien species, which are one of the most important threats worldwide to native biodiversity and economic profitability in various sectors, including agriculture. However, agricultural producers are not homogeneous. They may have different objectives and priorities, use different technologies, and occupy heterogeneous parcels of land. If the producers differ in terms of their attitude towards invasive pests and the damages they cause, there are probably external effects in the form of pest spread impacts and subsequent damages caused. We study such impacts in the case of two producer types: profit-seeking professional producers and utility-seeking hobby producers. We show that the hobby producer, having first set a breeding ground for the pest, under-invests in pest control. We also discuss potential policy instruments to correct this market failure and highlight the importance of considering different stakeholders and their heterogeneous incentives when designing policies to control invasive alien species.
Resumo:
Pollen-mediated gene flow is one of the main concerns associated with the introduction of genetically modified (GM) crops. Should a premium for non-GM varieties emerge on the market, ‘contamination’ by GM pollen would generate a revenue loss for growers of non-GM varieties. This paper analyses the problem of pollen-mediated gene flow as a particular type of production externality. The model, although simple, provides useful insights into coexistence policies. Following on from this and taking GM herbicide-tolerant oilseed rape (Brassica napus) as a model crop, a Monte Carlo simulation is used to generate data and then estimate the effect of several important policy variables (including width of buffer zones and spatial aggregation) on the magnitude of the externality associated with pollen-mediated gene flow.
Resumo:
This article examines the adoption of genetically modified herbicide tolerant (GMHT) crops in the European Union (EU) prior to its commercial release. A set of potential drivers including the implementation of coexistence measures by farmers, farmers’ own motivational factors (e.g. economic, environmental and technical factors) and perceived social pressure to accept or reject adoption may influence European Union farmers’ willingness to adopt GMHT oilseed rape and GMHT maize. The analysis includes economic and sociological factors. Results show that coexistence measures may hamper GMHT adoption in the EU.
Resumo:
Bangladesh Rural Advancement Committee (BRAC), a non-governmental organisation (NGO), runs a large number of non-formal primary schools in Bangladesh which target out-of-school children from poor families. These schools are well-known for their effectiveness in closing the gender gap in primary school enrolment. On the other hand, registered non-government secondary madrasas (or Islamic schools) today enrol one girl against every boy student. In this article, we document a positive spillover effect of BRAC schools on female secondary enrolment in registered madrasas. Drawing upon school enrolment data aggregated at the region level, we first show that regions that had more registered madrasas experienced greater secondary female enrolment growth during 1999–2003, holding the number of secular secondary schools constant. In this context we test the impact of BRAC-run primary schools on female enrolment in registered madrasas. We deal with the potential endogeneity of placement of BRAC schools using an instrumental variable approach. Controlling for factors such as local-level poverty, road access and distance from major cities, we show that regions with a greater presence of BRAC schools have higher female enrolment growth in secondary madrasas. The effect is much bigger when compared to that on secondary schools.
Resumo:
This article forecasts the extent to which the potential benefits of adopting transgenic crops may be reduced by costs of compliance with coexistence regulations applicable in various member states of the EU. A dynamic economic model is described and used to calculate the potential yield and gross margin of a set of crops grown in a selection of typical rotation scenarios. The model simulates varying levels of pest, weed, and drought pressures, with associated management strategies regarding pesticide and herbicide application, and irrigation. We report on the initial use of the model to calculate the net reduction in gross margin attributable to coexistence costs for insect-resistant (IR) and herbicide-tolerant (HT) maize grown continuously or in a rotation, HT soya grown in a rotation, HT oilseed rape grown in a rotation, and HT sugarbeet grown in a rotation. Conclusions are drawn about conditions favoring inclusion of a transgenic crop in a crop rotation, having regard to farmers’ attitude toward risk.
Resumo:
Although no GM crops currently are licensed for commercial production in the UK, as opposition to GM crops by consumers softens, this could change quickly. Although past studies have examined attitudes of UK farmers toward GM technologies in general, there has been little work on the impact of possible coexistence measures on their attitudes toward GM crop production. This could be because the UK Government has not engaged in any public dialogue on the coexistence measures that might be applied on farms. Based on a farm survey, this article examines farmers’ attitudes toward GM technologies and planting intentions for three crops (maize, oilseed rape, and sugar beet) based on a GM availability scenario. The article then nuances this analysis with a review of farmer perceptions of the level of constraint associated with a suite of notional farm-level coexistence measures and issues, based on current European Commission guidelines and practice in other EU Member States.
Resumo:
Myrmecophyte plants house ants in domatia in exchange for protection from herbivores. Ant-myrmecophyte mutualisms exhibit two general patterns due to competition between ants for plant occupancy: i) domatia nest-sites are a limiting resource and ii) each individual plant hosts one ant species at a time. However, individual camelthorn trees (Vachellia erioloba) typically host two to four ant species simultaneously, often coexisting in adjacent domatia on the same branch. Such fine-grain spatial coexistence brings into question the conventional wisdom on ant-myrmecophyte mutualisms. Camelthorn ants appear not to be nest-site limited, despite low abundance of suitable domatia, and have random distributions of nest-sites within and across trees. These patterns suggest a lack of competition between ants for domatia and contrast strongly with other ant-myrmecophyte systems. Comparison of this unusual case with others suggests that spatial scale is crucial to coexistence or competitive exclusion involving multiple ant species. Furthermore, coexistence may be facilitated when co-occurring ant species diverge strongly on at least one niche axis. Our conclusions provide recommendations for future ant-myrmecophyte research, particularly in utilising multispecies systems to further our understanding of mutualism biology.
Resumo:
We apply the Coexistence Approach (CoA) to reconstruct mean annual precipitation (MAP), mean annual temperature (MAT), mean temperature of thewarmestmonth (MTWA) and mean temperature of the coldest month (MTCO) at 44 pollen sites on the Qinghai–Tibetan Plateau. The modern climate ranges of the taxa are obtained (1) from county-level presence/absence data and (2) from data on the optimum and range of each taxon from Lu et al. (2011). The CoA based on the optimumand range data yields better predictions of observed climate parameters at the pollen sites than that based on the county-level data. The presence of arboreal pollen, most of which is derived fromoutside the region, distorts the reconstructions. More reliable reconstructions are obtained using only the non-arboreal component of the pollen assemblages. The root mean-squared error (RMSE) of the MAP reconstructions are smaller than the RMSE of MAT, MTWA and MTCO, suggesting that precipitation gradients are the most important control of vegetation distribution on the Qinghai–Tibetan Plateau. Our results show that CoA could be used to reconstruct past climates in this region, although in areas characterized by open vegetation the most reliable estimates will be obtained by excluding possible arboreal contaminants.
Resumo:
The effect of A-block polydispersity on the phase behavior of AB diblock copolymer melts is examined using a complete self-consistent field theory treatment that allows for fractionation of the parent molecular-weight distribution. In addition to observing the established shift in phase boundaries, we find the emergence of significant two-phase coexistence regions causing, for instance, the disappearance of the complex phase window. Furthermore, we find evidence that polydispersity relieves packing frustration, which will reduce the tendency for long-range order.
Resumo:
The development of genetically modified (GM) crops has led the European Union (EU) to put forward the concept of 'coexistence' to give fanners the freedom to plant both conventional and GM varieties. Should a premium for non-GM varieties emerge in the market, 'contamination' by GM pollen would generate a negative externality to conventional growers. It is therefore important to assess the effect of different 'policy variables'on the magnitude of the externality to identify suitable policies to manage coexistence. In this paper, taking GM herbicide tolerant oilseed rape as a model crop, we start from the model developed in Ceddia et al. [Ceddia, M.G., Bartlett, M., Perrings, C., 2007. Landscape gene flow, coexistence and threshold effect: the case of genetically modified herbicide tolerant oilseed rape (Brassica napus). Ecol. Modell. 205, pp. 169-180] use a Monte Carlo experiment to generate data and then estimate the effect of the number of GM and conventional fields, width of buffer areas and the degree of spatial aggregation (i.e. the 'policy variables') on the magnitude of the externality at the landscape level. To represent realistic conditions in agricultural production, we assume that detection of GM material in conventional produce might occur at the field level (no grain mixing occurs) or at the silos level (where grain mixing from different fields in the landscape occurs). In the former case, the magnitude of the externality will depend on the number of conventional fields with average transgenic presence above a certain threshold. In the latter case, the magnitude of the externality will depend on whether the average transgenic presence across all conventional fields exceeds the threshold. In order to quantify the effect of the relevant' policy variables', we compute the marginal effects and the elasticities. Our results show that when relying on marginal effects to assess the impact of the different 'policy variables', spatial aggregation is far more important when transgenic material is detected at field level, corroborating previous research. However, when elasticity is used, the effectiveness of spatial aggregation in reducing the externality is almost identical whether detection occurs at field level or at silos level. Our results show also that the area planted with GM is the most important 'policy variable' in affecting the externality to conventional growers and that buffer areas on conventional fields are more effective than those on GM fields. The implications of the results for the coexistence policies in the EU are discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background: Rhizobium leguminosarum is an alpha-proteobacterial N-2-fixing symbiont of legumes that has been the subject of more than a thousand publications. Genes for the symbiotic interaction with plants are well studied, but the adaptations that allow survival and growth in the soil environment are poorly understood. We have sequenced the genome of R. leguminosarum biovar viciae strain 3841. Results: The 7.75 Mb genome comprises a circular chromosome and six circular plasmids, with 61% G+C overall. All three rRNA operons and 52 tRNA genes are on the chromosome; essential protein-encoding genes are largely chromosomal, but most functional classes occur on plasmids as well. Of the 7,263 protein-encoding genes, 2,056 had orthologs in each of three related genomes ( Agrobacterium tumefaciens, Sinorhizobium meliloti, and Mesorhizobium loti), and these genes were overrepresented in the chromosome and had above average G+C. Most supported the rRNA-based phylogeny, confirming A. tumefaciens to be the closest among these relatives, but 347 genes were incompatible with this phylogeny; these were scattered throughout the genome but were over-represented on the plasmids. An unexpectedly large number of genes were shared by all three rhizobia but were missing from A. tumefaciens. Conclusion: Overall, the genome can be considered to have two main components: a 'core', which is higher in G+C, is mostly chromosomal, is shared with related organisms, and has a consistent phylogeny; and an 'accessory' component, which is sporadic in distribution, lower in G+C, and located on the plasmids and chromosomal islands. The accessory genome has a different nucleotide composition from the core despite a long history of coexistence.
Resumo:
1. The presence of an across-species trade-off between dispersal ability and competitive ability has been proposed as a mechanism that facilitates coexistence. It is not clear if a similar trade-off exists within species. Such a trade-off would constrain the evolution of either trait and, given appropriate selection pressures, promote local adaptation in these traits. 2. This study found substantial levels of heritable variation in competitive ability of the pea aphid, Acyrthosiphon pisum Harris (Homoptera: Aphididae), measured in terms of relative survival when reared with a single clone of the vetch aphid, Megoura viciae Buckton (Homoptera: Aphididae). 3. Pea aphids can move to new patches by either flying (longer distance dispersal) or walking (local dispersal) from plant to plant. There was considerable clonal variation in dispersal ability, measured in terms of the proportion of winged offspring produced, and ability to survive away from their host plant. 4. Winged individuals showed longer off-plant survival times than wingless forms of the same pea aphid clone. 5. There was no evidence of a relationship between clonal competitive ability and either measure of dispersal ability, although the power of the test is limited by the number of pea aphid clones used in the trial. 6. However, there was a positive correlation between clonal fecundity and the proportion of winged offspring produced. Although speculative, it is suggested that clones that are more likely to either overwhelm their host plant or attract higher numbers of natural enemies as a result of having higher fecundity are more likely to produce winged morphs.
Resumo:
We study the effects of NaCl on the self-assembly of AAKLVFF and beta A beta AKLVFF in solution. Both AAKLVFF and beta A beta AKLVFF self-assemble into twisted fibers in aqueous solution. The addition of NaCl to aqueous solutions of AAKLVFF produces large crystal-like nanotapes which eventually precipitate. In contrast, highly twisted fibrils were observed for beta A beta AKLVFF solutions at low salt concentration, while a coexistence of highly twisted fibers and nanotubes was observed for beta A beta AKLVFF at high salt concentration. The self-assembled structures observed for beta A beta AKLVFF in NaCl solutions were ascribed to the progressive screening of the beta A beta AKLVFF surface charge caused by the addition of salt.