13 resultados para cod gadus-morhua
em CentAUR: Central Archive University of Reading - UK
Resumo:
The addition of the atropisomeric racemic sulfur compound 4,4′-biphenanthrene-3,3′-dithiol (H2 biphes) to a dichloromethane solution of [{M(μ-OMe)(cod)}2] (M = Rh, Ir, cod = cycloocta-1,5-diene) afforded the dithiolate-bridged complexes [{Rh2(μ-biphes)(cod)2}n] (n = 2 5 or n = 1 6) and [{Ir2(μ-biphes)(cod)2}n]·nCH2Cl27. When 1,1′-binaphthalene-2,2′-dithiol (H2 binas) reacted with [{Ir(μ-OMe)(cod)}2], complex [Ir2(μ-binas)(cod)2] 8 was obtained. Complexes 5 and 6 reacted with carbon monoxide to give the dinuclear tetracarbonyl complex [Rh2(μ-biphes)(CO)4] 9. The reaction of 9 with PR3 provided the mixed-ligand complexes [{Rh2(μ-biphes)(CO)2(PR3)2}2] · xCH2Cl2 (R = Ph, x = 2 10, C6H11, x = 1 11) and [{Rh2(μ-biphes)(CO)3(PR3)}2] · CH2Cl212 (R = OC6H4But-o). The crystal structure of 6 was determined by X-ray diffraction. Reaction of the dithioether ligand Me2biphes with [Rh(cod)2]ClO4 in CH2Cl2 solution afforded the cationic complex [Rh(cod)(Me2biphes)]ClO4 · CH2Cl213. Asymmetric hydroformylation of styrene was performed using the complexes described. The extent of aldehyde conversion ranges from 53 to 100%, with selectivities towards branched aldehydes in the range 51 to 96%. The enantioselectivities were quite low and did not exceed 20%.
Resumo:
This paper discusses the risks of a shutdown of the thermohaline circulation (THC) for the climate system, for ecosystems in and around the North Atlantic as well as for fisheries and agriculture by way of an Integrated Assessment. The climate model simulations are based on greenhouse gas scenarios for the 21st century and beyond. A shutdown of the THC, complete by 2150, is triggered if increased freshwater input from inland ice melt or enhanced runoff is assumed. The shutdown retards the greenhouse gas-induced atmospheric warming trend in the Northern Hemisphere, but does not lead to a persistent net cooling. Due to the simulated THC shutdown the sea level at the North Atlantic shores rises by up to 80 cm by 2150, in addition to the global sea level rise. This could potentially be a serious impact that requires expensive coastal protection measures. A reduction of marine net primary productivity is associated with the impacts of warming rather than a THC shutdown. Regional shifts in the currents in the Nordic Seas could strongly deteriorate survival chances for cod larvae and juveniles. This could lead to cod fisheries becoming unprofitable by the end of the 21st century. While regional socioeconomic impacts might be large, damages would be probably small in relation to the respective gross national products. Terrestrial ecosystem productivity is affected much more by the fertilization from the increasing CO2 concentration than by a THC shutdown. In addition, the level of warming in the 22nd to 24th century favours crop production in northern Europe a lot, no matter whether the THC shuts down or not. CO2 emissions corridors aimed at limiting the risk of a THC breakdown to 10% or less are narrow, requiring departure from business-as-usual in the next few decades. The uncertainty about THC risks is still high. This is seen in model analyses as well as in the experts’ views that were elicited. The overview of results presented here is the outcome of the Integrated Assessment project INTEGRATION.
Resumo:
The previously synthesised Schiff-base ligands 2-(2-Ph2PC6H4N = CH) - R' - C6H3OH (R' = 3-OCH3, HL1; 5-OCH3, HL2; 5-Br, HL3; 5-Cl, HL4) were prepared by a faster, more efficient route involving a microwave assisted co-condensation of 2-(diphenylphosphino) aniline with the appropriate substituted salicylaldehyde. HL1-4 react directly with (MCl2)-Cl-II (M = Pd, Pt) or (PtI2)-I-II(cod) affording neutral square-planar complexes of general formula [(MCl)-Cl-II(eta(3)-L1-4)] (M = Pd, Pt, 1 - 8) and [(PtI)-I-II(eta(3)-L1-4)] (M = Pd, Pt, 9 - 12). Reaction of complexes 1 - 4 with the triarylphosphines PR3 (R = Ph, p-tolyl) gave the novel ionic complexes [Pd-II(PR3)(eta(3)- L1-4)] ClO4 (13 - 20). Substituted platinum complexes of the type [Pt-II(PR3)(eta(3)- L1-4)] ClO4 (R = P(CH2CH2CN)(3) 21 - 24) and [Pt-II( P(p-tolyl)(3))(eta(3)-L-3,L-4)] ClO4 ( 25 and 26) were synthesised from the appropriate [(PtCl)-Cl-II(eta(3)-L1-4)] complex (5 - 8) and PR3. The complexes are characterised by microanalytical and spectroscopic techniques. The crystal structures of 3, 6, 10, 15, 20 and 26 were determined and revealed the metal to be in a square-planar four-coordinate environment containing a planar tridentate ligand with an O, N, P donor set together with one further atom which is trans to the central nitrogen atom.
Resumo:
C-1-Symmetric phosphino/phosphonite ligands are prepared by the reactions of Ph2P(CH2)(2)P(NMe2)(2) with (S)-1,11'-bi-2-naphthol (to give L-A) or (S)-10,10'-bi-9-phenanthrol (to give L-B). Racemic 10,10'-bi-9-phenanthrol is synthesized in three steps from phenanthrene in 44% overall yield. The complexes [PdCl2(L-A,L-B)] (1a,b), [PtCl2(L-A,L-B)] (2a,b), [Rh(cod)(L-A,L-B)]BF4 (3a,b) and [Rh(L-A,L-B)(2)]BF4 (4a,b) are reported and the crystal structure of la has been determined. A P-31 NMR study shows that M, a 1:1 mixture of the monodentates, PMePh2 and methyl monophosphonite L-1a (based on (S)-1,11'-bi-2-naphthol), reacts with 1 equiv of [Rh(cod)(2)]BF4 to give the heteroligand complex [Rh(cod)(PMePh2)(L-1a)]BF4 (5) and homoligand complexes [Rh(cod)(PMePh2)(2)]BF4 (6) and [Rh(cod)(L-1a)(2)]BF4 (7) in the ratio 2:1:1. The same mixture of 5-7 is obtained upon mixing the isolated homoligand complexes 6 and 7 although the equilibrium is only established rapidly in the presence of an excess of PMePh2. The predominant species 5 is a monodentate ligand complex analogue of the chelate 3a. When the mixture of 5-7 is exposed to 5 atm H-2 for 1 h (the conditions used for catalyst preactivation in the asymmetric hydrogenation studies), the products are identified as the solvento species [Rh(PMePh2)(L-1a)(S)(2)]BF4 (5'), [Rh(S)(2)(PMePh2)(2)]BF4 (6') and [Rh(S)(2)(L-1a)(2)]BF4 (7') and are formed in the same 2:1:1 ratio. The reaction of M with 0.5 equiv of [Rh(cod)(2)]BF4 gives exclusively the heteroligand complex cis-[Rh(PMePh2)(2)(L-1a)(2)]BF4 (8), an analogue of 4a. The asymmetric hydrogenation of dehydroamino acid derivatives catalyzed by 3a,b is reported, and the enantioselectivities are compared with those obtained with (a) chelate catalysts derived from analogous diphosphonite ligands L-2a and L-2b, (b) catalysts based on methyl monophosphonites L-1a and L-1b, and (c) catalysts derived from mixture M. For the cinnamate and acrylate substrates studied, the catalysts derived from the phosphino/phosphonite bidentates L-A,L-B generally give superior enantioselectivities to the analogous diphosphonites L-2a and L-2b; these results are rationalized in terms of delta/lambda-chelate conformations and allosteric effects of the substrates. The rate of hydrogenation of acrylate substrate A with heterochelate 3a is significantly faster than with the homochelate analogues [Rh(L-2a)(cod)]BF4 and [Rh(dppe)(cod)]BF4. A synergic effect on the rate is also observed with the monodentate analogues: the rate of hydrogenation with the mixture containing predominantly heteroligand complex 5 is faster than with the monophosphine complex 6 or monophosphonite complex 7. Thus the hydrogenation catalysis carried out with M and [Rh(cod)(2)]BF4 is controlled by the dominant and most efficient heteroligand complex 5. In this study, the heterodiphos chelate 3a is shown to be more efficient and gives the opposite sense of optical induction t the heteromonophos analogue
Resumo:
Treatment of [Ir(bpa)(cod)](+) complex [1](+) with a strong base (e.g., tBuO(-)) led to unexpected double deprotonation to form the anionic [Ir-(bpa-2H)(cod)](-) species [3](-), via the mono-deprotonated neutral amido complex [Ir(bpa-H)(cod)] as an isolable intermediate. A certain degree of aromaticity of the obtained metal-chelate ring may explain the favourable double deprotonation. The rhodium analogue [4](-) was prepared in situ. The new species [M(bpa-2H)(cod)](-) (M = Rh, Ir) are best described as two-electron reduced analogues of the cationic imine complexes [M-I(cod)(Py-CH2-N=CH-Py)](+). One-electron oxidation of [3](-) and [4](-) produced the ligand radical complexes [3]* and [4]*. Oxygenation of [3](-) with O-2 gave the neutral carboxamido complex [Ir(cod)(py-CH2-N-CO-py)] via the ligand radical complex [3]* as a detectable intermediate.
Resumo:
Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other spaceborne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so one must first calibrate the reflected solar radiation received by the photon-counting detectors of the GLAS 532-nm channel, the primary channel for atmospheric products. Solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (i) calibration with coincident airborne and GLAS observations, (ii) calibration with coincident Geostationary Opera- tional Environmental Satellite (GOES) and GLAS observations of deep convective clouds, and (iii) cali- bration from first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retriev- als is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.
Resumo:
Associative memory networks such as Radial Basis Functions, Neurofuzzy and Fuzzy Logic used for modelling nonlinear processes suffer from the curse of dimensionality (COD), in that as the input dimension increases the parameterization, computation cost, training data requirements, etc. increase exponentially. Here a new algorithm is introduced for the construction of a Delaunay input space partitioned optimal piecewise locally linear models to overcome the COD as well as generate locally linear models directly amenable to linear control and estimation algorithms. The training of the model is configured as a new mixture of experts network with a new fast decision rule derived using convex set theory. A very fast simulated reannealing (VFSR) algorithm is utilized to search a global optimal solution of the Delaunay input space partition. A benchmark non-linear time series is used to demonstrate the new approach.
Resumo:
Addition of the dithioethers (−)-DIOSR2 (R=Me, iPr) (2,3-O-isopropylidene-1,4-dimethyl (and diisopropyl) thioether-L-threitol) to a dichloromethane solution of [Rh(COD)2]ClO4 (COD=1,5-cyclooctadiene) yielded the mononuclear complexes [Rh(COD)(DIOSR2)]ClO4. X-ray diffraction methods showed that the [Rh(COD)(DIOSiPr2)]ClO4 complex had an square-planar coordination geometry at the rhodium atom with the iPr groups in anti position. Cyclooctadiene complexes react with carbon monoxide to form dinuclear tetracarbonylated complexes [(CO)2Rh(μ-DIOSR2)2(CO)2](ClO4)2. [Rh(COD)(DIOSR2)]ClO4 are active catalyst precursors in styrene hydroformylation at 30 atm and 65°C which give conversions of up to 99% with a regioselectivity in 2-phenylpropanal as high as 74%. In all cases enantioselectivities are low.
Resumo:
2-[Methyl(2-methylphenyl)amino]ethanol undergoes an ortho-alkyllithiation reaction with n-butyllithium to lead to a new mixed benzyllithium−lithium alkoxide. This organolithium species reacts with PPh2Cl, with selective P−C bond formation, to afford the ligand 2-[methyl(2-((diphenylphosphino)methyl)phenyl)amino]ethanol L1. The coordination of the ligand L1 to copper(I) leads to the complex [Cu(L1)2](BF4), whose structure has been determined by an X-ray diffraction study. In the solid state, one of the ligands acts as a monodentate phosphine while the other adopts a tridentate P,N,O coordination mode. A variable-temperature 31P NMR study demonstrated the existence of an equilibrium between the two modes in solution, with a coalescence temperature of ca. 0 °C, indicating a double-hemilabile behavior for the nitrogen and the oxygen functions. L1 reacts with [Pd(Me)(Cl)(COD)] to give a dinuclear complex in which the ligand appears to behave as a bridging anionic P,O ligand. Such a complex could serve as a model for a key intermediate in the proposed mechanism for the homogeneous catalysis of the methoxycarbonylation of propyne by certain palladium(II) complexes containing P,N ligands. L1 can undergo a second ortho-alkylmetalation reaction with n-butyllithium which, after addition of PPh2Cl, provides the new ligand 2-{methyl[2-(bis(diphenylphosphino)methyl)phenyl]amino}ethanol (L2) in high yield.
Resumo:
Heterobimetallic complexes [(P−P)Pt(μ-S−S)Rh(cod)]ClO4 (P−P = (PPh3)2, Ph2P(CH2)3PPh2 (dppp), and Ph2P(CH2)4PPh2 (dppb); S−S = -S(CH2)2S- (EDT), -S(CH2)3S- (PDT), -S(CH2)4S- (BDT), cod = 1,5-cyclooctadiene) reacted with CO to form the carbonyl complexes [(P−P)Pt(μ-S−S)Rh(CO)2]ClO4 and then with PR3 ligands to give [(P−P)Pt(μ-S−S)Rh(CO)(PR3)]ClO4. The binuclear framework of these cod complexes was maintained in the reactions reported. The cod complexes were tested as catalyst precursors in the hydroformylation of styrene. HPNMR in situ studies showed that mononuclear species formed under catalytic conditions.
Resumo:
Out-wintering pads offer a reduced cost system for wintering cattle, minimising damage to pasture, providing animal welfare and production benefits, and generate, potentially, a more manageable effluent and lower ammonia emissions. The objectives of the present study were (i) to contribute to improved understanding of the factors impacting on effluent quality, ammonia emissions and animal welfare via observations on four farm-based out-wintering pads (ComOWPs) in England, Wales and Ireland and more detailed studies undertaken on four experimental OWPs (ExpOWPs) constructed at Rothamsted Research North Wyke, Devon, England and (ii) to corroborate the effluent quality data from both the ComOWPs and the ExpOWPs, with findings in the literature. Woodchip size, feeding management and area allowance were the treatment factors applied on the ExpOWPs. These three factors were randomised across the four ExpOWPs, over four 6–7 week periods. Effluent quality from the ExpOWPs was sampled frequently in a flow proportional way and analysed for total N (TN); total P (TP); total solids (TS); ammonium-N (NH4+-N); nitrate-N (NO3−-N). Beef cattle were periodically weighed for determination of live weight gain (LWG). An approximate nitrogen balance was calculated as a means of understanding its partitioning and fate during and after the ExpOWPs use. Effluent quality from the ComOWPs was sampled frequently, also in a flow-proportional way, and analysed for TN, TP, TS, NH4+-N, NO3−-N, total K and COD. Effluent quality data from the ExpOWPs showed no significant differences (P > 0.05) between treatments, with average concentrations of 1095 mg l−1, and 806 mg l−1, for TN and NH4+-N, respectively. Average effluent concentrations from the ComOWPs were 356 mg l−1 TN and 124 mg l−1 NH4+-N. Ammonia emissions from the ExpOWPs showed no significant differences (P > 0.05) between the treatments, with average mean emission rates of 2.5 g m−2 d−1 NH3-N, respectively. A positive correlation was established between NH3-N emission rate and wind speed. Emission rates from the ComOWPs ranged from 0.7 to 1.6 g m−2 d−1 NH3-N. Average daily LWG on the ExpOWPs was 1.33 kg steer−1 d−1. The effluent from both the ComOWPs and ExpOWPs were more similar with dirty water and of consistently lower strength than beef cattle slurry, as supported by findings in the literature, and therefore, it is suggested to be subject to the regulatory requirements of dirty water rather than slurry.
Resumo:
This paper evaluates the relationship between the cloud modification factor (CMF) in the ultraviolet erythe- mal range and the cloud optical depth (COD) retrieved from the Aerosol Robotic Network (AERONET) "cloud mode" algorithm under overcast cloudy conditions (confirmed with sky images) at Granada, Spain, mainly for non-precipitating, overcast and relatively homogenous water clouds. Empirical CMF showed a clear exponential dependence on experimental COD values, decreasing approximately from 0.7 for COD=10 to 0.25 for COD=50. In addition, these COD measurements were used as input in the LibRadtran radia tive transfer code allowing the simulation of CMF values for the selected overcast cases. The modeled CMF exhibited a dependence on COD similar to the empirical CMF, but modeled values present a strong underestimation with respect to the empirical factors (mean bias of 22 %). To explain this high bias, an exhaustive comparison between modeled and experimental UV erythemal irradiance (UVER) data was performed. The comparison revealed that the radiative transfer simulations were 8 % higher than the observations for clear-sky conditions. The rest of the bias (~14 %) may be attributed to the substantial underestimation of modeled UVER with respect to experimental UVER under overcast conditions, although the correlation between both dataset was high (R2 ~ 0.93). A sensitive test showed that the main reason responsible for that underestimation is the experimental AERONET COD used as input in the simulations, which has been retrieved from zenith radiances in the visible range. In this sense, effective COD in the erythemal interval were derived from an iteration procedure based on searching the best match between modeled and experimental UVER values for each selected overcast case. These effective COD values were smaller than AERONET COD data in about 80 % of the overcast cases with a mean relative difference of 22 %.
Resumo:
Comprehensive surface-based retrievals of cloud optical and microphysical properties were made at Taihu, a highly polluted site in the central Yangtze Delta region, during a research campaign from May 2008 to December 2009. Cloud optical depth (COD), effective radius (Re), and liquid water path (LWP) were retrieved from measurements made with a suite of ground-based and spaceborne instruments, including an Analytical Spectral Devices spectroradiometer, a multi␣lter rotating shadowband radiometer, a multichannel microwave radiometer profiler, and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua satellites. Retrievals from zenith radiance measurements capture better the temporal variation of cloud properties than do retrievals from hemispherical fluxes. Annual mean LWP, COD, and Re are 115.8 ± 90.8 g/m2, 28.5 ± 19.2, and 6.9 ± 4.2 microns. Over 90% of LWP values are less than 250 g/m2. Most of the COD values (>90%) fall between 5 and 60, and ~80% of Re values are less than 10 microns. Maximum (minimum) values of LWP and Re occur in summer (winter); COD is highest in winter and spring. Raining and nonraining clouds have signi␣cant differences in LWP, COD, and Re. Rainfall frequency is best correlated with LWP, followed by COD and Re. Cloud properties retrieved from multiple ground-based instruments are also compared with those from satellite retrievals. On average, relative to surface retrievals, mean differences of satellite retrievals in cloud LWP, COD, and Re were -33.6 g/m2 (-26.4%), -5.8 (-31.4%), and 2.9 ␣m (29.3%) for 11 MODIS-Terra overpasses and -43.3 g/m2 (-22.3%), -3.0 (-10.0%), and -1.3 ␣m (-12.0%) for 8 MODIS-Aqua overpasses, respectively. These discrepancies indicate that MODIS cloud products still suffer from large uncertainties in this region.