3 resultados para clonal plant

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The presence of an across-species trade-off between dispersal ability and competitive ability has been proposed as a mechanism that facilitates coexistence. It is not clear if a similar trade-off exists within species. Such a trade-off would constrain the evolution of either trait and, given appropriate selection pressures, promote local adaptation in these traits. 2. This study found substantial levels of heritable variation in competitive ability of the pea aphid, Acyrthosiphon pisum Harris (Homoptera: Aphididae), measured in terms of relative survival when reared with a single clone of the vetch aphid, Megoura viciae Buckton (Homoptera: Aphididae). 3. Pea aphids can move to new patches by either flying (longer distance dispersal) or walking (local dispersal) from plant to plant. There was considerable clonal variation in dispersal ability, measured in terms of the proportion of winged offspring produced, and ability to survive away from their host plant. 4. Winged individuals showed longer off-plant survival times than wingless forms of the same pea aphid clone. 5. There was no evidence of a relationship between clonal competitive ability and either measure of dispersal ability, although the power of the test is limited by the number of pea aphid clones used in the trial. 6. However, there was a positive correlation between clonal fecundity and the proportion of winged offspring produced. Although speculative, it is suggested that clones that are more likely to either overwhelm their host plant or attract higher numbers of natural enemies as a result of having higher fecundity are more likely to produce winged morphs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Britain, managed grass lawns provide the most traditional and widespread of garden and landscape practices in use today. Grass lawns are coming under increasing challenge as they tend to support a low level of biodiversity and can require substantial additional inputs to maintain. Here we apply a novel approach to the traditional monocultural lawnscape by replacing grasses entirely with clonal perennial forbs. We monitored changes in plant coverage and species composition over a two year period and here we report the results of a study comparing plant origin native, non-native and mixed) and mowing regime. This allows us to assess the viability of this construct as an alternative to traditional grass lawns. Grass-free lawns provided a similar level of plant cover to grass lawns. Both the mowing regime and the combination of species used affected this outcome, with native plant species seen to have the highest survival rates, and mowing at 4cm to produce the greatest amount of ground coverage and plant species diversity within grass-free lawns. Grass-free lawns required over 50% less mowing than a traditionally managed grass lawn. Observations suggest that plant forms that exhibited: a) a relatively fast growth rate, b) a relatively large individual leaf area, and c) an average leaf height substantially above the cut to be applied, were unsuitable for use in grass-free lawns. With an equivalent level of ground coverage to grass lawns, increased plant diversity and a reduced need for mowing, the grass-free lawn can be seen as a species diverse, lower input and potentially highly ornamental alternative to the traditional lawn format.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The grass-free lawn is a novel development in modern ornamental horticulture where the traditional monoculture of grass is replaced by a variety of mowing-tolerant clonal forbs. It brings floral aesthetics and a diverse species approach to the use of lawn space. How the number of constituent forb species affects the aesthetic and structural performance of grass-free lawns was investigated using grass-free lawns composed of four, six and twelve British native clonal perennial forb species. Lawn productivity was seen to increase with increasing species number but the relationship was not linear. Plant cover was dynamic in all lawn types, varied between years and was not representative of individual species' floral performance. The behaviour of component species common to all lawns suggested that lawns with 12 species show greater structural stability than the lawns with a lower species number. Visual performance in lawns with the greatest species number was lower than in lawns with fewer species, with increasing variety in floral size and individual species floral productivity leading to a trade-off between diversity and floral performance. Individual species were seen to have different aesthetic functions in grass-free lawns either by providing flowers, ground coverage or both.