24 resultados para classification and regression trees
em CentAUR: Central Archive University of Reading - UK
Resumo:
In this paper, various types of fault detection methods for fuel cells are compared. For example, those that use a model based approach or a data driven approach or a combination of the two. The potential advantages and drawbacks of each method are discussed and comparisons between methods are made. In particular, classification algorithms are investigated, which separate a data set into classes or clusters based on some prior knowledge or measure of similarity. In particular, the application of classification methods to vectors of reconstructed currents by magnetic tomography or to vectors of magnetic field measurements directly is explored. Bases are simulated using the finite integration technique (FIT) and regularization techniques are employed to overcome ill-posedness. Fisher's linear discriminant is used to illustrate these concepts. Numerical experiments show that the ill-posedness of the magnetic tomography problem is a part of the classification problem on magnetic field measurements as well. This is independent of the particular working mode of the cell but influenced by the type of faulty behavior that is studied. The numerical results demonstrate the ill-posedness by the exponential decay behavior of the singular values for three examples of fault classes.
Resumo:
Many important drugs in the Chinese materia medica (CMM) are known to be toxic, and it has long been recognized in classical Chinese medical theory that toxicity can arise directly from the components of a single CMM or may be induced by an interaction between combined CMM. Traditional Chinese Medicine presents a unique set of pharmaceutical theories that include particular methods for processing, combining and decocting, and these techniques contribute to reducing toxicity as well as enhancing efficacy. The current classification of toxic CMM drugs, traditional methods for processing toxic CMM and the prohibited use of certain combinations, is based on traditional experience and ancient texts and monographs, but accumulating evidence increasingly supports their use to eliminate or reduce toxicity. Modern methods are now being used to evaluate the safety of CMM; however, a new system for describing the toxicity of Chinese herbal medicines may need to be established to take into account those herbs whose toxicity is delayed or otherwise hidden, and which have not been incorporated into the traditional classification. This review explains the existing classification and justifies it where appropriate, using experimental results often originally published in Chinese and previously not available outside China.
Resumo:
In this article, we illustrate experimentally an important consequence of the stochastic component in choice behaviour which has not been acknowledged so far. Namely, its potential to produce ‘regression to the mean’ (RTM) effects. We employ a novel approach to individual choice under risk, based on repeated multiple-lottery choices (i.e. choices among many lotteries), to show how the high degree of stochastic variability present in individual decisions can distort crucially certain results through RTM effects. We demonstrate the point in the context of a social comparison experiment.
Resumo:
Parkinson is a neurodegenerative disease, in which tremor is the main symptom. This paper investigates the use of different classification methods to identify tremors experienced by Parkinsonian patients.Some previous research has focussed tremor analysis on external body signals (e.g., electromyography, accelerometer signals, etc.). Our advantage is that we have access to sub-cortical data, which facilitates the applicability of the obtained results into real medical devices since we are dealing with brain signals directly. Local field potentials (LFP) were recorded in the subthalamic nucleus of 7 Parkinsonian patients through the implanted electrodes of a deep brain stimulation (DBS) device prior to its internalization. Measured LFP signals were preprocessed by means of splinting, down sampling, filtering, normalization and rec-tification. Then, feature extraction was conducted through a multi-level decomposition via a wavelettrans form. Finally, artificial intelligence techniques were applied to feature selection, clustering of tremor types, and tremor detection.The key contribution of this paper is to present initial results which indicate, to a high degree of certainty, that there appear to be two distinct subgroups of patients within the group-1 of patients according to the Consensus Statement of the Movement Disorder Society on Tremor. Such results may well lead to different resultant treatments for the patients involved, depending on how their tremor has been classified. Moreover, we propose a new approach for demand driven stimulation, in which tremor detection is also based on the subtype of tremor the patient has. Applying this knowledge to the tremor detection problem, it can be concluded that the results improve when patient clustering is applied prior to detection.
Resumo:
To better understand the dynamics of bee populations in crops, we assessed the effect of landscape context and habitat type on bee communities in annual entomophilous crops in Europe. We quantified bee communities in five pairs of crop-country: buckwheat in Poland, cantaloupe in France, field beans in the UK, spring oilseed rape in Sweden, and strawberries in Germany. For each country, 7-10 study fields were sampled over a gradient of increasing proportion of semi-natural habitats in the surrounding landscape. The CORINE land cover classification was used to characterize the landscape over a 3 km radius around each study field and we used multivariate and regression analyses to quantify the impact of landscape features on bee abundance and diversity at the sub-generic taxonomic level. Neither overall wild bee abundance nor diversity, taken as the number of sub-genera. was significantly affected by the proportion of semi-natural habitat. Therefore, we used the most precise level of the CORINE classification to examine the possible links between specific landscape features and wild bee communities. Bee community composition fell into three distinct groups across Europe: group I included Poland, Germany, and Sweden, group 2 the UK, and group 3 France. Among all three groups, wild bee abundance and sub-generic diversity were affected by 17 landscape elements including some semi-natural habitats (e.g., transitional wood land-shrub), some urban habitats (e.g., sport and leisure facilities) and some crop habitats (e.g., non-irrigated arable land). Some bee taxa were positively affected by urban habitats only, others by semi-natural habitats only, and others by a combination of semi-natural, urban and crop habitats. Bee sub-genera favoured by urban and crop habitats were more resistant to landscape change than those favoured only by semi-natural habitats. In agroecosystems, the agricultural intensification defined as the loss of semi-natural habitats does not necessarily cause a decline in evenness at the local level, but can change community composition towards a bee fauna dominated by common taxa. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A unified approach is proposed for data modelling that includes supervised regression and classification applications as well as unsupervised probability density function estimation. The orthogonal-least-squares regression based on the leave-one-out test criteria is formulated within this unified data-modelling framework to construct sparse kernel models that generalise well. Examples from regression, classification and density estimation applications are used to illustrate the effectiveness of this generic data-modelling approach for constructing parsimonious kernel models with excellent generalisation capability. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Full-waveform laser scanning data acquired with a Riegl LMS-Q560 instrument were used to classify an orange orchard into orange trees, grass and ground using waveform parameters alone. Gaussian decomposition was performed on this data capture from the National Airborne Field Experiment in November 2006 using a custom peak-detection procedure and a trust-region-reflective algorithm for fitting Gauss functions. Calibration was carried out using waveforms returned from a road surface, and the backscattering coefficient c was derived for every waveform peak. The processed data were then analysed according to the number of returns detected within each waveform and classified into three classes based on pulse width and c. For single-peak waveforms the scatterplot of c versus pulse width was used to distinguish between ground, grass and orange trees. In the case of multiple returns, the relationship between first (or first plus middle) and last return c values was used to separate ground from other targets. Refinement of this classification, and further sub-classification into grass and orange trees was performed using the c versus pulse width scatterplots of last returns. In all cases the separation was carried out using a decision tree with empirical relationships between the waveform parameters. Ground points were successfully separated from orange tree points. The most difficult class to separate and verify was grass, but those points in general corresponded well with the grass areas identified in the aerial photography. The overall accuracy reached 91%, using photography and relative elevation as ground truth. The overall accuracy for two classes, orange tree and combined class of grass and ground, yielded 95%. Finally, the backscattering coefficient c of single-peak waveforms was also used to derive reflectance values of the three classes. The reflectance of the orange tree class (0.31) and ground class (0.60) are consistent with published values at the wavelength of the Riegl scanner (1550 nm). The grass class reflectance (0.46) falls in between the other two classes as might be expected, as this class has a mixture of the contributions of both vegetation and ground reflectance properties.
Resumo:
In this paper, we introduce a novel high-level visual content descriptor which is devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt to bridge the so called “semantic gap”. The proposed image feature vector model is fundamentally underpinned by the image labelling framework, called Collaterally Confirmed Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts of the images with the state-of-the-art low-level image processing and visual feature extraction techniques for automatically assigning linguistic keywords to image regions. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicates that our proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models.
Resumo:
The precision farmer wants to manage the variation in soil nutrient status continuously, which requires reliable predictions at places between sampling sites. Ordinary kriging can be used for prediction if the data are spatially dependent and there is a suitable variogram model. However, even if data are spatially correlated, there are often few soil sampling sites in relation to the area to be managed. If intensive ancillary data are available and these are coregionalized with the sparse soil data, they could be used to increase the accuracy of predictions of the soil properties by methods such as cokriging, kriging with external drift and regression kriging. This paper compares the accuracy of predictions of the plant available N properties (mineral N and potentially available N) for two arable fields in Bedfordshire, United Kingdom, from ordinary kriging, cokriging, kriging with external drift and regression kriging. For the last three, intensive elevation data were used with the soil data. The mean squared errors of prediction from these methods of kriging were determined at validation sites where the values were known. Kriging with external drift resulted in the smallest mean squared error for two of the three properties examined, and cokriging for the other. The results suggest that the use of intensive ancillary data can increase the accuracy of predictions of soil properties in arable fields provided that the variables are related spatially. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
An evolutionary perspective on human thought and behaviour indicates that we should expect to find universal systems of perception, classification, and decision-making regarding the natural world. It is the interaction between these evolved aspects of the human mind, the biodiversity of the natural world, and unique historical, social, and economic contexts within which individuals develop and act that gives rise to cultural diversity. The palaeoanthropological record also indicates that language is a recently evolved phenomenon. This suggests that linguistic approaches in ethnobiology are likely to provide only a partial understanding of how humans perceive, classify, and engage with the natural world.
Resumo:
This study aimed to establish relationships between maize yield and rainfall on different temporal and spatial scales, in order to provide a basis for crop monitoring and modelling. A 16-year series of maize yield and daily rainfall from 11 municipalities and micro-regions of Rio Grande do Sul State was used. Correlation and regression analyses were used to determine associations between crop yield and rainfall for the entire crop cycle, from tasseling to 30 days after, and from 5 days before tasseling to 40 days after. Close relationships between maize yield and rainfall were found, particularly during the reproductive period (45-day period comprising the flowering and grain filling). Relationships were closer on a regional scale than at smaller scales. Implications of the crop-rainfall relationships for crop modelling are discussed.
Resumo:
In this preliminary study, the reproductive phenology of two monoecious fig species, Ficus racemosa and F. rubiginosa, was examined in tropical Australia. Syconia (inflorescences) occurred on both species all year round, but pre-floral and interfloral syconia were much commoner than the wasp-receptive and wasp-emitting phases in both species. The temporal overlap of the wasp-receptive and wasp-emitting phases on a single tree indicated that self-pollination was possible in both species and that pollinators may sometimes persist through multiple generations on one tree. This sexual phase overlap was commoner in F. rubiginosa than in F racemosa. The two species also differed in their general within-tree asynchrony, with a higher diversity of phases on F. rubiginosa than on F. racemosa. The time from syconium initiation to ripening was very similar in F. rubiginosa (mean = 48.51 days) and F. racemosa (mean = 43.53 days). However, there was much more variation within and between trees for F. rubiginosa. In addition, the wasp-receptive phase was found to last up to 5 days (rnean = 4.38) in F. rubiginosa. Such longevity should contribute substantially to local pollinator population persistence. Future work should use genetic studies to determine whether self-pollination is common in these fig species.
Resumo:
Multivariate statistical methods were used to investigate file Causes of toxicity and controls on groundwater chemistry from 274 boreholes in an Urban area (London) of the United Kingdom. The groundwater was alkaline to neutral, and chemistry was dominated by calcium, sodium, and Sulfate. Contaminants included fuels, solvents, and organic compounds derived from landfill material. The presence of organic material in the aquifer caused decreases in dissolved oxygen, sulfate and nitrate concentrations. and increases in ferrous iron and ammoniacal nitrogen concentrations. Pearson correlations between toxicity results and the concentration of individual analytes indicated that concentrations of ammoinacal nitrogen, dissolved oxygen, ferrous iron, and hydrocarbons were important where present. However, principal component and regression analysis suggested no significant correlation between toxicity and chemistry over the whole area. Multidimensional Scaling was used to investigate differences in sites caused by historical use, landfill gas status, or position within the sample area. Significant differences were observed between sites with different historical land use and those with different gas status. Examination of the principal component matrix revealed that these differences are related to changes in the importance of reduced chemical species.
Resumo:
The comparison of cognitive and linguistic skills in individuals with developmental disorders is fraught with methodological and psychometric difficulties. In this paper, we illustrate some of these issues by comparing the receptive vocabulary knowledge and non-verbal reasoning abilities of 41 children with Williams syndrome, a genetic disorder in which language abilities are often claimed to be relatively strong. Data from this group were compared with data from typically developing children, children with Down syndrome, and children with non-specific learning difficulties using a number of approaches including comparison of age-equivalent scores, matching, analysis of covariance, and regression-based standardization. Across these analyses children with Williams syndrome consistently demonstrated relatively good receptive vocabulary knowledge, although this effect appeared strongest in the oldest children.