40 resultados para chromosomal aberration and reconstruction
em CentAUR: Central Archive University of Reading - UK
Resumo:
Oligofructose (OF), comprised of fructose oligomers with a terminal glucose unit, is a family Of oligosaccharides derived from the hydrolysis of inulin. Consumption of OF in animals and humans increases colonic bifidobacteria levels. The present study evaluates the safety of OF in both a 13 week rat feeding Study and Using in Vitro mutagenicity tests. Fecal bifidobacteria levels were also determined by in situ hybridization to assess a biological function of OF. Rats received either a control diet OF diets containing one of four doses of OF. Total, HDL, and LDL-cholesterol levels were significantly lower at several time points during the study in groups receiving OF compared to controls with the largest effects Occurring in the high dose male animals. Weight gain in the male high dose group was significantly lower at early time points compared to controls but]lot Significantly different at the end of study. As expected, cecal weights increased in a dose-related manner and fecal bifidobacteria levels also demonstrated a dose-related increase. There were no consistent differences in gross pathology or histopathology related to dietary OF. OF did not induce a positive response in the Ames test or chromosomal aberration test with CHO cells. These results demonstrate no adverse effects of OF. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Paleosols were exposed in sections through four abandoned pre-Hispanic agricultural terraces surrounding an infilled mire basin in the southern Peruvian Andes. The two paleosols beneath the Tocotoccasa terrace represent the original ‘natural’ solum and a later soil formed after construction of the agricultural terrace, probably during the early Middle Horizon cultural period (615–695 AD). The soil at the current surface developed subsequent to the building up and reconstruction of the terrace, possibly during the late Late Intermediate period (1200–1400 AD). Micromorphology revealed an unexpected abundance of clay coatings within the upper terrace paleosol and surface terrace soil, a phenonemon attributed to the migration and/or accumulation of neoformed clay produced from the weathering of very unstable volcanic clasts, perhaps fuelled by arid/humid climatic oscillations and/or seasonal input of irrigation waters. The paleosols at Tocotoccasa could not be correlated with any degree of confidence with those beneath the other three terraces due to differences in pedosedimentary properties and uncertainties over chronological controls. Thus, it seems likely that either the terraces were (re)constructed and utilised over different cultural periods or that there is significant variation in the extent of weathering of material used for reconstruction of the terraces. Unfortunately, it cannot be ascertained from the data available whether the terraces were abandoned for any significant period of time prior to reconstruction and, if so, whether this was a regional phenomenon related to climate, social, or economic changes.
Resumo:
Resistivity imaging was carried out on four large Roman barrows at Bartlow in Cambridgeshire. The geophysical survey formed part of a wider research project designed to record and assess the landscape context of the largest surviving Roman burial mounds in Britain. The barrows today range in height from 6.6 m to 13.2 m and their steep profile loosed particular practical and modelling challenges. Data were obtained using a Campus Geopulse resistance meter with up to 50 electrodes spaced at 1 m intervals and lines up to 76 m long. A total of 24 lines was obtained. Topographic corrections were applied to the pseudosections, whichwere inverted using Res 2 Dinv and Res3 Dinv. Resistivity imaging was particularly successful in identifying evidence for the antiquarian explorations of the site. Central collapse features or in-filled tunnels image as high resistance features in all barrows and in one (Barrow IV) there is also a low resistance feature in the approximate position of a known antiquarian tunnel. Barrow VI had a thick covering of high-resistivity that may relate to nineteenth century landscaping and reconstruction of this monument. Resistivity imaging also revealed possible evidence for ancient revetments in all four large barrows. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
There is a lack of knowledge base in relation to experiences gained and lessons learnt from previously executed National Health Service (NHS) infrastructure projects in the UK. This is in part a feature of one-off construction projects, which typify healthcare infrastructure, and in part due to the absence of a suitable method for conveying such information. The complexity of infrastructure delivery process in the NHS makes the construction of healthcare buildings a formidable task. This is particularly the case for the NHS trusts who have little or no experience of construction projects. To facilitate understanding a most important aspect of the delivery process, which is the preparation of a capital investment proposal; steps taken in developing the business case for an NHS healthcare facility are examined. The context for such examination is provided by the planning process of a healthcare project, studied retrospectively. The process is analysed using a social science based method called ‘building stories’, developed at the University of California-Berkeley. By applying this method, stories or narratives are constructed around the data captured on the case study. The findings indicate that the business case process may be used to justify, rather than identify, trusts’ requirements. The study is useful for UK public sector clients as well as consultants and professionals who aim to participate in the delivery of healthcare infrastructure projects in the UK.
Resumo:
The ability of six scanning cloud radar scan strategies to reconstruct cumulus cloud fields for radiation study is assessed. Utilizing snapshots of clean and polluted cloud fields from large eddy simulations, an analysis is undertaken of error in both the liquid water path and monochromatic downwelling surface irradiance at 870 nm of the reconstructed cloud fields. Error introduced by radar sensitivity, choice of radar scan strategy, retrieval of liquid water content (LWC), and reconstruction scheme is explored. Given an in␣nitely sensitive radar and perfect LWC retrieval, domain average surface irradiance biases are typically less than 3 W m␣2 ␣m␣1, corresponding to 5–10% of the cloud radiative effect (CRE). However, when using a realistic radar sensitivity of ␣37.5 dBZ at 1 km, optically thin areas and edges of clouds are dif␣cult to detect due to their low radar re-ectivity; in clean conditions, overestimates are of order 10 W m␣2 ␣m␣1 (~20% of the CRE), but in polluted conditions, where the droplets are smaller, this increases to 10–26 W m␣2 ␣m␣1 (~40–100% of the CRE). Drizzle drops are also problematic; if treated as cloud droplets, reconstructions are poor, leading to large underestimates of 20–46 W m␣2 ␣m␣1 in domain average surface irradiance (~40–80% of the CRE). Nevertheless, a synergistic retrieval approach combining the detailed cloud structure obtained from scanning radar with the droplet-size information and location of cloud base gained from other instruments would potentially make accurate solar radiative transfer calculations in broken cloud possible for the first time.
Resumo:
Whole-genome sequencing (WGS) could potentially provide a single platform for extracting all the information required to predict an organism’s phenotype. However, its ability to provide accurate predictions has not yet been demonstrated in large independent studies of specific organisms. In this study, we aimed to develop a genotypic prediction method for antimicrobial susceptibilities. The whole genomes of 501 unrelated Staphylococcus aureus isolates were sequenced, and the assembled genomes were interrogated using BLASTn for a panel of known resistance determinants (chromosomal mutations and genes carried on plasmids). Results were compared with phenotypic susceptibility testing for 12 commonly used antimicrobial agents (penicillin, methicillin, erythromycin, clindamycin, tetracycline, ciprofloxacin, vancomycin, trimethoprim, gentamicin, fusidic acid, rifampin, and mupirocin) performed by the routine clinical laboratory. We investigated discrepancies by repeat susceptibility testing and manual inspection of the sequences and used this information to optimize the resistance determinant panel and BLASTn algorithm. We then tested performance of the optimized tool in an independent validation set of 491 unrelated isolates, with phenotypic results obtained in duplicate by automated broth dilution (BD Phoenix) and disc diffusion. In the validation set, the overall sensitivity and specificity of the genomic prediction method were 0.97 (95% confidence interval [95% CI], 0.95 to 0.98) and 0.99 (95% CI, 0.99 to 1), respectively, compared to standard susceptibility testing methods. The very major error rate was 0.5%, and the major error rate was 0.7%. WGS was as sensitive and specific as routine antimicrobial susceptibility testing methods. WGS is a promising alternative to culture methods for resistance prediction in S. aureus and ultimately other major bacterial pathogens.
Resumo:
This study examines the efficacy of published δ18O data from the calcite of Late Miocene surface dwelling planktonic foraminifer shells, for sea surface temperature estimates for the pre-Quaternary. The data are from 33 Late Miocene (Messinian) marine sites from a modern latitudinal gradient of 64°N to 48°S. They give estimates of SSTs in the tropics/subtropics (to 30°N and S) that are mostly cooler than present. Possible causes of this temperature discrepancy are ecological factors (e.g. calcification of shells at levels below the ocean mixed layer), taphonomic effects (e.g. diagenesis or dissolution), inaccurate estimation of Late Miocene seawater oxygen isotope composition, or a real Late Miocene cool climate. The scale of apparent cooling in the tropics suggests that the SST signal of the foraminifer calcite has been reset, at least in part, by early diagenetic calcite with higher δ18O, formed in the foraminifer shells in cool sea bottom pore waters, probably coupled with the effects of calcite formed below the mixed layer during the life of the foraminifera. This hypothesis is supported by the markedly cooler SST estimates from low latitudes—in some cases more than 9 °C cooler than present—where the gradients of temperature and the δ18O composition of seawater between sea surface and sea bottom are most marked, and where ocean surface stratification is high. At higher latitudes, particularly N and S of 30°, the temperature signal is still cooler, though maximum temperature estimates overlap with modern SSTs N and S of 40°. Comparison of SST estimates for the Late Miocene from alkenone unsaturation analysis from the eastern tropical Atlantic at Ocean Drilling Program (ODP) Site 958—which suggest a warmer sea surface by 2–4 °C, with estimates from oxygen isotopes at Deep Sea Drilling Project (DSDP) Site 366 and ODP Site 959, indicating cooler than present SSTs, also suggest a significant impact on the δ18O signal. Nevertheless, much of the original SST variation is clearly preserved in the primary calcite formed in the mixed layer, and records secular and temporal oceanographic changes at the sea surface, such as movement of the Antarctic Polar Front in the Southern Ocean. Cooler SSTs in the tropics and sub-tropics are also consistent with the Late Miocene latitude reduction in the coral reef belt and with interrupted reef growth on the Queensland Plateau of eastern Australia, though it is not possible to quantify absolute SSTs with the existing oxygen isotope data. Reconstruction of an accurate global SST dataset for Neogene time-slices from the existing published DSDP/ODP isotope data, for use in general circulation models, may require a detailed re-assessment of taphonomy at many sites.
Resumo:
This study examines the efficacy of published δ18O data from the calcite of Late Miocene surface dwelling planktonic foraminifer shells, for sea surface temperature estimates for the pre-Quaternary. The data are from 33 Late Miocene (Messinian) marine sites from a modern latitudinal gradient of 64°N to 48°S. They give estimates of SSTs in the tropics/subtropics (to 30°N and S) that are mostly cooler than present. Possible causes of this temperature discrepancy are ecological factors (e.g. calcification of shells at levels below the ocean mixed layer), taphonomic effects (e.g. diagenesis or dissolution), inaccurate estimation of Late Miocene seawater oxygen isotope composition, or a real Late Miocene cool climate. The scale of apparent cooling in the tropics suggests that the SST signal of the foraminifer calcite has been reset, at least in part, by early diagenetic calcite with higher δ18O, formed in the foraminifer shells in cool sea bottom pore waters, probably coupled with the effects of calcite formed below the mixed layer during the life of the foraminifera. This hypothesis is supported by the markedly cooler SST estimates from low latitudes—in some cases more than 9 °C cooler than present—where the gradients of temperature and the δ18O composition of seawater between sea surface and sea bottom are most marked, and where ocean surface stratification is high. At higher latitudes, particularly N and S of 30°, the temperature signal is still cooler, though maximum temperature estimates overlap with modern SSTs N and S of 40°. Comparison of SST estimates for the Late Miocene from alkenone unsaturation analysis from the eastern tropical Atlantic at Ocean Drilling Program (ODP) Site 958—which suggest a warmer sea surface by 2–4 °C, with estimates from oxygen isotopes at Deep Sea Drilling Project (DSDP) Site 366 and ODP Site 959, indicating cooler than present SSTs, also suggest a significant impact on the δ18O signal. Nevertheless, much of the original SST variation is clearly preserved in the primary calcite formed in the mixed layer, and records secular and temporal oceanographic changes at the sea surface, such as movement of the Antarctic Polar Front in the Southern Ocean. Cooler SSTs in the tropics and sub-tropics are also consistent with the Late Miocene latitude reduction in the coral reef belt and with interrupted reef growth on the Queensland Plateau of eastern Australia, though it is not possible to quantify absolute SSTs with the existing oxygen isotope data. Reconstruction of an accurate global SST dataset for Neogene time-slices from the existing published DSDP/ODP isotope data, for use in general circulation models, may require a detailed re-assessment of taphonomy at many sites.