4 resultados para choice functions
em CentAUR: Central Archive University of Reading - UK
Resumo:
The facilitation of healthier dietary choices by consumers is one of the key elements of the UK Government’s food strategy. Designing and targeting dietary interventions requires a clear understanding of the determinants of dietary choice. Conventional analysis of the determinants of dietary choice has focused on mean response functions which may mask significant differences in the dietary behaviour of different segments of the population. In this paper we use a quantile regression approach to investigate how food consumption behaviour varies amongst UK households in different segments of the population, especially in the upper and lower quantiles characterised by healthy or unhealthy consumption patterns. We find that the effect of demographic determinants of dietary choice on households that exhibit less healthy consumption patterns differs significantly from that on households that make healthier consumption choices. A more nuanced understanding of the differences in the behavioural responses of households making less-healthy eating choices provides useful insights for the design and targeting of measures to promote healthier diets.
Resumo:
Decision strategies in multi-attribute Choice Experiments are investigated using eye-tracking. The visual attention towards, and attendance of, attributes is examined. Stated attendance is found to diverge substantively from visual attendance of attributes. However, stated and visual attendance are shown to be informative, non-overlapping sources of information about respondent utility functions when incorporated into model estimation. Eye-tracking also reveals systematic nonattendance of attributes only by a minority of respondents. Most respondents visually attend most attributes most of the time. We find no compelling evidence that the level of attention is related to respondent certainty, or that higher or lower value attributes receive more or less attention
Resumo:
We present a new Bayesian econometric specification for a hypothetical Discrete Choice Experiment (DCE) incorporating respondent ranking information about attribute importance. Our results indicate that a DCE debriefing question that asks respondents to rank the importance of attributes helps to explain the resulting choices. We also examine how mode of survey delivery (online and mail) impacts model performance, finding that results are not substantively a§ected by the mode of survey delivery. We conclude that the ranking data is a complementary source of information about respondent utility functions within hypothetical DCEs
Resumo:
Understanding the relationships between trait diversity, species diversity and ecosystem functioning is essential for sustainable management. For functions comprising two trophic levels, trait matching between interacting partners should also drive functioning. However, the predictive ability of trait diversity and matching is unclear for most functions, particularly for crop pollination, where interacting partners did not necessarily co-evolve. World-wide, we collected data on traits of flower visitors and crops, visitation rates to crop flowers per insect species and fruit set in 469 fields of 33 crop systems. Through hierarchical mixed-effects models, we tested whether flower visitor trait diversity and/or trait matching between flower visitors and crops improve the prediction of crop fruit set (functioning) beyond flower visitor species diversity and abundance. Flower visitor trait diversity was positively related to fruit set, but surprisingly did not explain more variation than flower visitor species diversity. The best prediction of fruit set was obtained by matching traits of flower visitors (body size and mouthpart length) and crops (nectar accessibility of flowers) in addition to flower visitor abundance, species richness and species evenness. Fruit set increased with species richness, and more so in assemblages with high evenness, indicating that additional species of flower visitors contribute more to crop pollination when species abundances are similar. Synthesis and applications. Despite contrasting floral traits for crops world-wide, only the abundance of a few pollinator species is commonly managed for greater yield. Our results suggest that the identification and enhancement of pollinator species with traits matching those of the focal crop, as well as the enhancement of pollinator richness and evenness, will increase crop yield beyond current practices. Furthermore, we show that field practitioners can predict and manage agroecosystems for pollination services based on knowledge of just a few traits that are known for a wide range of flower visitor species.