3 resultados para chemical communication

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We elucidate the detailed effects of gut microbial depletion on the bile acid sub-metabolome of multiple body compartments (liver, kidney, heart, and blood plasma) in rats. We use a targeted ultraperformance liquid chromatography with time of flight mass-spectrometry assay to characterize the differential primary and secondary bile acid profiles in each tissue and show a major increase in the proportion of taurine-conjugated bile acids in germ-free (GF) and antibiotic (streptomycin/penicillin)-treated rats.Although conjugated bile acids dominate the hepatic profile (97.0 ± 1.5%) of conventional animals, unconjugated bile acids comprise the largest proportion of the total measured bile acid profile in kidney (60.0±10.4%) andheart (53.0 ± 18.5%) tissues. In contrast, in the GF animal, taurine-conjugated bile acids (especially taurocholic acid and tauro-β-muricholic acid) dominated the bile acid profiles (liver: 96.0 ± 14.5%; kidney: 96 ± 1%; heart: 93 ± 1%; plasma: 93.0 ± 2.3%), with unconjugated and glycine-conjugated species representing a small proportion of the profile. Higher free taurine levels were found in GF livers compared with the conventional liver (5.1-fold; P < 0.001). Bile acid diversity was also lower in GF and antibiotic-treated tissues compared with conventional animals. Because bile acids perform important signaling functions, it is clear that these chemical communication networks are strongly influencedbymicrobial activitiesormodulation, as evidenced by farnesoid X receptor-regulated pathway transcripts. The presence of specific microbial bile acid co-metabolite patterns in peripheral tissues (including heart and kidney) implies a broader signaling role for these compounds and emphasizes the extent of symbiotic microbial influences in mammalian homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systematic review (SR) is a rigorous, protocol-driven approach designed to minimise error and bias when summarising the body of research evidence relevant to a specific scientific question. Taking as a comparator the use of SR in synthesising research in healthcare, we argue that SR methods could also pave the way for a “step change” in the transparency, objectivity and communication of chemical risk assessments (CRA) in Europe and elsewhere. We suggest that current controversies around the safety of certain chemicals are partly due to limitations in current CRA procedures which have contributed to ambiguity about the health risks posed by these substances. We present an overview of how SR methods can be applied to the assessment of risks from chemicals, and indicate how challenges in adapting SR methods from healthcare research to the CRA context might be overcome. Regarding the latter, we report the outcomes from a workshop exploring how to increase uptake of SR methods, attended by experts representing a wide range of fields related to chemical toxicology, risk analysis and SR. Priorities which were identified include: the conduct of CRA-focused prototype SRs; the development of a recognised standard of reporting and conduct for SRs in toxicology and CRA; and establishing a network to facilitate research, communication and training in SR methods. We see this paper as a milestone in the creation of a research climate that fosters communication between experts in CRA and SR and facilitates wider uptake of SR methods into CRA.