2 resultados para channel capacity

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dense deployments of wireless local area networks (WLANs) are fast becoming a permanent feature of all developed cities around the world. While this increases capacity and coverage, the problem of increased interference, which is exacerbated by the limited number of channels available, can severely degrade the performance of WLANs if an effective channel assignment scheme is not employed. In an earlier work, an asynchronous, distributed and dynamic channel assignment scheme has been proposed that (1) is simple to implement, (2) does not require any knowledge of the throughput function, and (3) allows asynchronous channel switching by each access point (AP). In this paper, we present extensive performance evaluation of this scheme when it is deployed in the more practical non-uniform and dynamic topology scenarios. Specifically, we investigate its effectiveness (1) when APs are deployed in a nonuniform fashion resulting in some APs suffering from higher levels of interference than others and (2) when APs are effectively switched `on/off' due to the availability/lack of traffic at different times, which creates a dynamically changing network topology. Simulation results based on actual WLAN topologies show that robust performance gains over other channel assignment schemes can still be achieved even in these realistic scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of high-density wireless local area network (WLAN) deployments in recent years is a testament to the insatiable demands for wireless broadband services. The increased density of WLAN deployments brings with it the potential of increased capacity, extended coverage, and exciting new applications. However, the corresponding increase in contention and interference can significantly degrade throughputs, unless new challenges in channel assignment are effectively addressed. In this paper, a client-assisted channel assignment scheme that can provide enhanced throughput is proposed. A study on the impact of interference on throughput with multiple access points (APs)is first undertaken using a novel approach that determines the possibility of parallel transmissions. A metric with a good correlation to the throughput, i.e., the number of conflict pairs, is used in the client-assisted minimum conflict pairs (MICPA) scheme. In this scheme, measurements from clients are used to assist the AP in determining the channel with the minimum number of conflict pairs to maximize its expected throughput. Simulation results show that the client-assisted MICPA scheme can provide meaningful throughput improvements over other schemes that only utilize the AP’s measurements.