6 resultados para champignons mycorhiziens arbusculaires (CMA)
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper describes a new strategy for the blind equalization so that the blind Constant Module Algorithm (CMA) can be smoothly switched to the decision- directed (DD) equalization. First, we propose a combination approach by running the CMA and DD equalization simultaneously to obtain a smooth switch between them. We then describe an "anchoring process" to eliminate the effect from the CMA at the steady state to achieve low residual noise. The overall equalization can be regarded as the DD equalization being anchored by the combination approach. Numerical simulations are given to verify the proposed strategy.
Resumo:
The convex combination is a mathematic approach to keep the advantages of its component algorithms for better performance. In this paper, we employ convex combination in the blind equalization to achieve better blind equalization. By combining the blind constant modulus algorithm (CMA) and decision directed algorithm, the combinative blind equalization (CBE) algorithm can retain the advantages from both. Furthermore, the convergence speed of the CBE algorithm is faster than both of its component equalizers. Simulation results are also given to verify the proposed algorithm.
Resumo:
The prediction of Northern Hemisphere (NH) extratropical cyclones by nine different ensemble prediction systems(EPSs), archived as part of The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE), has recently been explored using a cyclone tracking approach. This paper provides a continuation of this work, extending the analysis to the Southern Hemisphere (SH). While the EPSs have larger error in all cyclone properties in the SH, the relative performance of the different EPSs remains broadly consistent between the two hemispheres. Some interesting differences are also shown. The Chinese Meteorological Administration (CMA) EPS has a significantly lower level of performance in the SH compared to the NH. Previous NH results showed that the Centro de Previsao de Tempo e Estudos Climaticos (CPTEC) EPS underpredicts cyclone intensity. The results of this current study show that this bias is significantly larger in the SH. The CPTEC EPS also has very little spread in both hemispheres. As with the NH results, cyclone propagation speed is underpredicted by all the EPSs in the SH. To investigate this further, the bias was also computed for theECMWFhigh-resolution deterministic forecast. The bias was significantly smaller than the lower resolution ECMWF EPS.
Resumo:
The incorporation of numerical weather predictions (NWP) into a flood forecasting system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and lead to a high number of false alarms. The availability of global ensemble numerical weather prediction systems through the THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a new opportunity for flood forecast. The Grid-Xinanjiang distributed hydrological model, which is based on the Xinanjiang model theory and the topographical information of each grid cell extracted from the Digital Elevation Model (DEM), is coupled with ensemble weather predictions based on the TIGGE database (CMC, CMA, ECWMF, UKMO, NCEP) for flood forecast. This paper presents a case study using the coupled flood forecasting model on the Xixian catchment (a drainage area of 8826 km2) located in Henan province, China. A probabilistic discharge is provided as the end product of flood forecast. Results show that the association of the Grid-Xinanjiang model and the TIGGE database gives a promising tool for an early warning of flood events several days ahead.
Resumo:
A procedure (concurrent multiplicative-additive objective analysis scheme [CMA-OAS]) is proposed for operational rainfall estimation using rain gauges and radar data. On the basis of a concurrent multiplicative-additive (CMA) decomposition of the spatially nonuniform radar bias, within-storm variability of rainfall and fractional coverage of rainfall are taken into account. Thus both spatially nonuniform radar bias, given that rainfall is detected, and bias in radar detection of rainfall are handled. The interpolation procedure of CMA-OAS is built on Barnes' objective analysis scheme (OAS), whose purpose is to estimate a filtered spatial field of the variable of interest through a successive correction of residuals resulting from a Gaussian kernel smoother applied on spatial samples. The CMA-OAS, first, poses an optimization problem at each gauge-radar support point to obtain both a local multiplicative-additive radar bias decomposition and a regionalization parameter. Second, local biases and regionalization parameters are integrated into an OAS to estimate the multisensor rainfall at the ground level. The procedure is suited to relatively sparse rain gauge networks. To show the procedure, six storms are analyzed at hourly steps over 10,663 km2. Results generally indicated an improved quality with respect to other methods evaluated: a standard mean-field bias adjustment, a spatially variable adjustment with multiplicative factors, and ordinary cokriging.
Resumo:
Previous studies have shown that the human posterior cingulate contains a visual processing area selective for optic flow (CSv). However, other studies performed in both humans and monkeys have identified a somatotopic motor region at the same location (CMA). Taken together, these findings suggested the possibility that the posterior cingulate contains a single visuomotor integration region. To test this idea we used fMRI to identify both visual and motor areas of the posterior cingulate in the same brains and to test the activity of those regions during a visuomotor task. Results indicated that rather than a single visuomotor region the posterior cingulate contains adjacent but separate motor and visual regions. CSv lies in the fundus of the cingulate sulcus, while CMA lies in the dorsal bank of the sulcus, slightly superior in terms of stereotaxic coordinates. A surprising and novel finding was that activity in CSv was suppressed during the visuomotor task, despite the visual stimulus being identical to that used to localize the region. This may provide an important clue to the specific role played by this region in the utilization of optic flow to control self-motion.