136 resultados para categorical and mix datasets
em CentAUR: Central Archive University of Reading - UK
Resumo:
Background and Aims Highly variable, yet possibly convergent, morphology and lack of sequence variation have severely hindered production of a robust phylogenetic framework for the genus Ophrys. The aim of this study is to produce this framework as a basis for more rigorous species delimitation and conservation recommendations. Methods Nuclear and plastid DNA sequencing and amplified fragment length polymorphism (AFLP) were performed on 85 accessions of Ophrys, spanning the full range of species aggregates currently recognized. Data were analysed using a combination of parsimony and Bayesian tree-building techniques and by principal coordinates analysis. Key Results Complementary phylogenetic analyses and ordinations using nuclear, plastid and AFLP datasets identify ten genetically distinct groups (six robust) within the genus that may in turn be grouped into three sections (treated as subgenera by some authors). Additionally, genetic evidence is provided for a close relationship between the O. tenthredinifera, O. bombyliflora and O. speculum groups. The combination of these analytical techniques provides new insights into Ophrys systematics, notably recognition of the novel O. umbilicata group. Conclusions Heterogeneous copies of the nuclear ITS region show that some putative Ophrys species arose through hybridization rather than divergent speciation. The supposedly highly specific pseudocopulatory pollination syndrome of Ophrys is demonstrably 'leaky', suggesting that the genus has been substantially over-divided at the species level.
Resumo:
The consistency of precipitation variability estimated from the multiple satellite-based observing systems is assessed. There is generally good agreement between TRMM TMI, SSM/I, GPCP and AMSRE datasets for the inter-annual variability of precipitation since 1997 but the HOAPS dataset appears to overestimate the magnitude of variability. Over the tropical ocean the TRMM 3B42 dataset produces unrealistic variabilitys. Based upon deseasonalised GPCP data for the period 1998-2008, the sensitivity of global mean precipitation (P) to surface temperature (T) changes (dP/dT) is about 6%/K, although a smaller sensitivity of 3.6%/K is found using monthly GPCP data over the longer period 1989-2008. Over the tropical oceans dP/dT ranges from 10-30%/K depending upon time-period and dataset while over tropical land dP/dT is -8 to -11%/K for the 1998-2008 period. Analyzing the response of the tropical ocean precipitation intensity distribution to changes in T we find the wetter area P shows a strong positive response to T of around 20%/K. The response over the drier tropical regimes is less coherent and varies with datasets, but responses over the tropical land show significant negative relationships over an interannual time-scale. The spatial and temporal resolutions of the datasets strongly influence the precipitation responses over the tropical oceans and help explain some of the discrepancy between different datasets. Consistency between datasets is found to increase on averaging from daily to 5-day time-scales and considering a 1o (or coarser) spatial resolution. Defining the wet and dry tropical ocean regime by the 60th percentile of P intensity, the 5-day average, 1o TMI data exhibits a coherent drying of the dry regime at the rate of -20%/K and the wet regime becomes wetter at a similar rate with warming.
Resumo:
The Virtual Lightbox for Museums and Archives (VLMA) is a tool for collecting and reusing, in a structured fashion, the online contents of museums and archive datasets. It is not restricted to datasets with visual components although VLMA includes a lightbox service that enables comparison and manipulation of visual information. With VLMA, one can browse and search collections, construct personal collections, annotate them, export these collections to XML or Impress (Open Office) presentation format, and share collections with other VLMA users. VLMA was piloted as an e-Learning tool as part of JISC’s e-Learning focus in its first phase (2004-2005) and in its second phase (2005-2006) it has incorporated new partner collections while improving and expanding interfaces and services. This paper concerns its development as a research and teaching tool, especially to teachers using museum collections, and discusses the recent development of VLMA.
Resumo:
ERA-Interim is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim project was conducted in part to prepare for a new atmospheric reanalysis to replace ERA-40, which will extend back to the early part of the twentieth century. This article describes the forecast model, data assimilation method, and input datasets used to produce ERA-Interim, and discusses the performance of the system. Special emphasis is placed on various difficulties encountered in the production of ERA-40, including the representation of the hydrological cycle, the quality of the stratospheric circulation, and the consistency in time of the reanalysed fields. We provide evidence for substantial improvements in each of these aspects. We also identify areas where further work is needed and describe opportunities and objectives for future reanalysis projects at ECMWF
Resumo:
The Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) project has produced a global data-set of cloud and aerosol properties from the Along Track Scanning Radiometer-2 (ATSR-2) instrument, covering the time period 1995�2001. This paper presents the validation of aerosol optical depths (AODs) over the ocean from this product against AERONET sun-photometer measurements, as well as a comparison to the Advanced Very High Resolution Radiometer (AVHRR) optical depth product produced by the Global Aerosol Climatology Project (GACP). The GRAPE AOD over ocean is found to be in good agreement with AERONET measurements, with a Pearson's correlation coefficient of 0.79 and a best-fit slope of 1.0±0.1, but with a positive bias of 0.08±0.04. Although the GRAPE and GACP datasets show reasonable agreement, there are significant differences. These discrepancies are explored, and suggest that the downward trend in AOD reported by GACP may arise from changes in sampling due to the orbital drift of the AVHRR instruments.
Resumo:
The first part of this review examines what is meant by ‘urban land and property’ (ULP) and looks at the background of ULP in the light of trends in UK urban areas over the past 50 years. Key conceptual approaches to the ULP ‘ownership issue’ are identified, together with the constraints to empirical analysis, which include a lack of data and patchy and inconsistent datasets. Three main components of ULP ownership in the UK are then examined using published data on commercial property, residential property and urban land, including ‘previously developed land’ (PDL) and ‘development land, covering both the private and public sectors. The review examines past trends in ULP ownership patterns in these sectors within the UK, and the key drivers which have created the present day patterns of ULP ownership. It concludes by identifying possible future trends in ULP ownership over the next 50 years to 2060 in the three main ULP sectors.
Resumo:
BACKGROUND: Social networks are common in digital health. A new stream of research is beginning to investigate the mechanisms of digital health social networks (DHSNs), how they are structured, how they function, and how their growth can be nurtured and managed. DHSNs increase in value when additional content is added, and the structure of networks may resemble the characteristics of power laws. Power laws are contrary to traditional Gaussian averages in that they demonstrate correlated phenomena. OBJECTIVES: The objective of this study is to investigate whether the distribution frequency in four DHSNs can be characterized as following a power law. A second objective is to describe the method used to determine the comparison. METHODS: Data from four DHSNs—Alcohol Help Center (AHC), Depression Center (DC), Panic Center (PC), and Stop Smoking Center (SSC)—were compared to power law distributions. To assist future researchers and managers, the 5-step methodology used to analyze and compare datasets is described. RESULTS: All four DHSNs were found to have right-skewed distributions, indicating the data were not normally distributed. When power trend lines were added to each frequency distribution, R(2) values indicated that, to a very high degree, the variance in post frequencies can be explained by actor rank (AHC .962, DC .975, PC .969, SSC .95). Spearman correlations provided further indication of the strength and statistical significance of the relationship (AHC .987. DC .967, PC .983, SSC .993, P<.001). CONCLUSIONS: This is the first study to investigate power distributions across multiple DHSNs, each addressing a unique condition. Results indicate that despite vast differences in theme, content, and length of existence, DHSNs follow properties of power laws. The structure of DHSNs is important as it gives insight to researchers and managers into the nature and mechanisms of network functionality. The 5-step process undertaken to compare actor contribution patterns can be replicated in networks that are managed by other organizations, and we conjecture that patterns observed in this study could be found in other DHSNs. Future research should analyze network growth over time and examine the characteristics and survival rates of superusers.
Resumo:
This paper presents a quantitative evaluation of a tracking system on PETS 2015 Challenge datasets using well-established performance measures. Using the existing tools, the tracking system implements an end-to-end pipeline that include object detection, tracking and post- processing stages. The evaluation results are presented on the provided sequences of both ARENA and P5 datasets of PETS 2015 Challenge. The results show an encouraging performance of the tracker in terms of accuracy but a greater tendency of being prone to cardinality error and ID changes on both datasets. Moreover, the analysis show a better performance of the tracker on visible imagery than on thermal imagery.
Resumo:
Epidemiologic studies highlight the potential role of dietary selenium (Se) in colorectal cancer prevention. Our goal was to elucidate whether expression of factors crucial for colorectal homoeostasis is affected by physiologic differences in Se status. Using transcriptomics and proteomics followed by pathway analysis, we identified pathways affected by Se status in rectal biopsies from 22 healthy adults, including 11 controls with optimal status (mean plasma Se = 1.43 μM) and 11 subjects with suboptimal status (mean plasma Se = 0.86 μM). We observed that 254 genes and 26 proteins implicated in cancer (80%), immune function and inflammatory response (40%), cell growth and proliferation (70%), cellular movement, and cell death (50%) were differentially expressed between the 2 groups. Expression of 69 genes, including selenoproteins W1 and K, which are genes involved in cytoskeleton remodelling and transcription factor NFκB signaling, correlated significantly with Se status. Integrating proteomics and transcriptomics datasets revealed reduced inflammatory and immune responses and cytoskeleton remodelling in the suboptimal Se status group. This is the first study combining omics technologies to describe the impact of differences in Se status on colorectal expression patterns, revealing that suboptimal Se status could alter inflammatory signaling and cytoskeleton in human rectal mucosa and so influence cancer risk.
Resumo:
Individuals with Williams syndrome (WS) display poor visuo-spatial cognition relative to verbal abilities. Furthermore, whilst perceptual abilities are delayed, visuo-spatial construction abilities are comparatively even weaker, and are characterised by a local bias. We investigated whether his differentiation in visuo-spatial abilities can be explained by a deficit in coding spatial location in WS. This can be measured by assessing participants' understanding of the spatial relations between objects within a visual scene. Coordinate and categorical spatial relations were investigated independently in four participant groups: 21 individuals with WS; 21 typically developing (TD) children matched for non-verbal ability; 20 typically developing controls of a lower non-verbal ability; and 21 adults. A third task measured understanding of visual colour relations. Results indicated first, that the comprehension of categorical and coordinate spatial relations is equally poor in WS. Second, that the comprehension of visual relations is also at an equivalent level to spatial relational understanding in this population. These results can explain the difference in performance on visuo-spatial perception and construction tasks in WS. In addition, both the WS and control groups displayed response biases in the spatial tasks. However, the direction of bias differed across the groups. This finding is explored in relation to current theories of spatial location coding. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Individuals, families, networks, and botanic gardens have made records of flowering times of a wide range of plant species over many years. These data can highlight year to year changes in seasonal events (phenology) and those datasets covering long periods draw interest for their perspective on plant responses to climate change. Temperate flowering phenology is complex, using environmental cues such as temperature and photoperiod to attune flowering to appropriate seasonal conditions. Here we give an overview of flowering phenological recording, outline different patterns of flowering, and look at the interpretation of datasets in relation to seasonal and climatic change.
Resumo:
The estimation of prediction quality is important because without quality measures, it is difficult to determine the usefulness of a prediction. Currently, methods for ligand binding site residue predictions are assessed in the function prediction category of the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiment, utilizing the Matthews Correlation Coefficient (MCC) and Binding-site Distance Test (BDT) metrics. However, the assessment of ligand binding site predictions using such metrics requires the availability of solved structures with bound ligands. Thus, we have developed a ligand binding site quality assessment tool, FunFOLDQA, which utilizes protein feature analysis to predict ligand binding site quality prior to the experimental solution of the protein structures and their ligand interactions. The FunFOLDQA feature scores were combined using: simple linear combinations, multiple linear regression and a neural network. The neural network produced significantly better results for correlations to both the MCC and BDT scores, according to Kendall’s τ, Spearman’s ρ and Pearson’s r correlation coefficients, when tested on both the CASP8 and CASP9 datasets. The neural network also produced the largest Area Under the Curve score (AUC) when Receiver Operator Characteristic (ROC) analysis was undertaken for the CASP8 dataset. Furthermore, the FunFOLDQA algorithm incorporating the neural network, is shown to add value to FunFOLD, when both methods are employed in combination. This results in a statistically significant improvement over all of the best server methods, the FunFOLD method (6.43%), and one of the top manual groups (FN293) tested on the CASP8 dataset. The FunFOLDQA method was also found to be competitive with the top server methods when tested on the CASP9 dataset. To the best of our knowledge, FunFOLDQA is the first attempt to develop a method that can be used to assess ligand binding site prediction quality, in the absence of experimental data.
Resumo:
The Prism family of algorithms induces modular classification rules which, in contrast to decision tree induction algorithms, do not necessarily fit together into a decision tree structure. Classifiers induced by Prism algorithms achieve a comparable accuracy compared with decision trees and in some cases even outperform decision trees. Both kinds of algorithms tend to overfit on large and noisy datasets and this has led to the development of pruning methods. Pruning methods use various metrics to truncate decision trees or to eliminate whole rules or single rule terms from a Prism rule set. For decision trees many pre-pruning and postpruning methods exist, however for Prism algorithms only one pre-pruning method has been developed, J-pruning. Recent work with Prism algorithms examined J-pruning in the context of very large datasets and found that the current method does not use its full potential. This paper revisits the J-pruning method for the Prism family of algorithms and develops a new pruning method Jmax-pruning, discusses it in theoretical terms and evaluates it empirically.