18 resultados para catalyst methanation carbon oxide
em CentAUR: Central Archive University of Reading - UK
Resumo:
Stabilized water droplet dispersed in supercritical carbon dioxide fluid is demonstrated to be an excellent alternative solvent system to acetic acid for air oxidation of a number of alkyl aromatic hydrocarbons using Co(II) species at mild conditions.
Resumo:
A water gas shift catalyst comprising metal particles and a metal oxide material is disclosed. The metal particles comprise at least one precious metal and the metal oxide material comprises at least one reducible metal oxide. Substantially all of the metal particles are encapsulated by the metal oxide material such that the catalyst has substantially no activity for methanation. The loading of the metal particles is between 0.5-25wt% based on the weight of the metal oxide material. A process for preparing the catalyst is also disclosed.
Resumo:
Polyethylene oxide solution containing multi-walled carbon nanotubes have been electrospun onto a rotating collector to produce highly aligned arrays of electrospun nanofibers ranging in diameters from (200 – 360) nanometres. The addition of a surfactant (Triton X-100)is highly effective in dispersing carbon nanotube within an aqueous solution of polyethylene oxide and the resulting mixture can be electrospun without excessive clumping to produce nanofibers containing high loadings of nanotubes; in this case up to 5% wt thereby providing an effective route to electrically conductive nanofibres.
Resumo:
Tungsten carbide/oxide particles have been prepared by the gel precipitation of tungstic acid in the presence of an organic gelling agent [10% ammonium poly(acrylic acid) in water, supplied by Ciba Specialty Chemicals]. The feed solution; a homogeneous mixture of sodium tungstate and ammonium poly(acrylic acid) in water, was dropped from a 1-mm jet into hydrochloric acid saturated hexanol/concentrated hydrochloric acid to give particles of a mixture of tungstic acid and poly(acrylic acid), which, after drying in air at 100 degrees C and heating to 900 degrees C in argon for 2 h, followed by heating in carbon dioxide for a further 2 h and cooling, gives a mixture of WO, WC, and a trace of NaxWO3, with the carbon for the formation of WC being provided by the thermal carbonization of poly(acrylic acid). The pyrolyzed product is friable and easily broken down in a pestle and mortar to a fine powder or by ultrasonics, in water, to form a stable colloid. The temperature of carbide formation by this process is significantly lower (900 degrees C) than that reported for the commercial preparation of tungsten carbide, typically > 1400 degrees C. In addition, the need for prolonged grinding of the constituents is obviated because the reacting moieties are already in intimate contact on a molecular basis. X-ray diffraction, particle sizing, transmission electron microscopy, surface area, and pore size distribution studies have been carried out, and possible uses are suggested. A flow diagram for the process is described.
Resumo:
A new approach of employing metal particles in micelles for the hydrogenation of organic molecules in the presence of fluorinated surfactant and water in supercritical carbon dioxide has very recently been introduced. This is allegedly to deliver many advantages for carrying out catalysis including the use of supercritical carbon dioxide (scCO(2)) as a greener solvent. Following this preliminary account, the present work aims to provide direct visual evidence on the formation of metal microemulsions and to investigate whether metal located in the soft micellar assemblies could affect reaction selectivity. Synthesis of Pd nanoparticles in perfluorohydrocarboxylate anionic micelles in scCO(2) is therefore carried out in a stainless steel batch reactor at 40 degreesC and in a 150 bar CO2/H-2 mixture. Homogeneous dispersion of the microemulsion containing Pd nanoparticles in scCO(2) is observed through a sapphire window reactor at W-0 ratios (molar water-to-surfactant ratios) ranging from 2 to 30. It is also evidenced that the use of micelle assemblies as new metal catalyst nanocarriers could indeed exert a great influence on product selectivity. The hydrogenation of a citral molecule that contains three reducible groups (aldehyde, double bonds at the 2,3-position and the 6,7-position) is studied. An unusually high selectivity toward citronellal (a high regioselectivity toward the reduction of the 2,3-unsaturation) is observed in supercritical carbon dioxide. On the other hand, when the catalysis is carried out in the conventional liquid or vapor phase over the same reaction time, total hydrogenation of the two double bonds is achieved. It is thought that the high kinetic reluctance for double bond hydrogenation of the citral molecule at the hydrophobic end (the 6,7-position) is due to the unique micelle environment that is in close proximity to the metal surface in supercritical carbon dioxide that guides a head-on attack of the molecule toward the core metal particle.
Resumo:
Inelastic neutron scattering spectroscopy has been used to observe and characterise hydrogen on the carbon component of a Pt/C catalyst. INS provides the complete vibration spectrum of coronene, regarded as a molecular model of a graphite layer. The vibrational modes are assigned with the aid of ab initio density functional theory calculations and the INS spectra by the a-CLIMAX program. A spectrum for which the H modes of coronene have been computationally suppressed, a carbon-only coronene spectrum, is a better representation of the spectrum of a graphite layer than is coronene itself. Dihydrogen dosing of a Pt/C catalyst caused amplification of the surface modes of carbon, an effect described as H riding on carbon. From the enhancement of the low energy carbon modes (100-600 cm(-1)) it is concluded that spillover hydrogen becomes attached to dangling bonds at the edges of graphitic regions of the carbon support. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Hydrogen spillover on carbon-supported precious metal catalysts has been investigated with inelastic neutron scattering (INS) spectroscopy. The aim, which was fully realized, was to identify spillover hydrogen on the carbon support. The inelastic neutron scattering spectra of Pt/C, Ru/C, and PtRu/C fuel cell catalysts dosed with hydrogen were determined in two sets of experiments: with the catalyst in the neutron beam and, using an annular cell, with carbon in the beam and catalyst pellets at the edge of the cell excluded from the beam. The vibrational modes observed in the INS spectra were assigned with reference to the INS of a polycyclic aromatic hydrocarbon, coronene, taken as a molecular model of a graphite layer, and with the aid of computational modeling. Two forms of spillover hydrogen were identified: H at edge sites of a graphite layer (formed after ambient dissociative chemisorption of H-2), and a weakly bound layer of mobile H atoms (formed by surface diffusion of H atoms after dissociative chernisorption of H-2 at 500 K). The INS spectra exhibited characteristic riding modes of H on carbon and on Pt or Ru. In these riding modes H atoms move in phase with vibrations of the carbon and metal lattices. The lattice modes are amplified by neutron scattering from the H atoms attached to lattice atoms. Uptake of hydrogen, and spillover, was greater for the Ru containing catalysts than for the Pt/C catalyst. The INS experiments have thus directly demonstrated H spillover to the carbon support of these metal catalysts.
Resumo:
We have reported earlier that modification of commercial graphite Pt-supported catalysts with Teflon fluorinated polymeric coating of a very strong hydrophobic nature can significantly improve catalytic activity for aerial oxidation of water-insoluble alcohols such as anthracene methanol in supercritical carbon dioxide (scCO(2)). Thus, this paper presents some further characterization of these new catalyst materials and the working fluid phase during the catalysis. Using the same Teflon-modified metal catalysts, this paper addresses the oxidation of another water-insoluble alcohol molecule, m-hydrobenzoin in scCO(2). It is found that conversion and product distribution of this diol oxidation critically depend on the temperature and pressure of the scCO(2) used, which suggest the remarkable solvent properties of the scCO(2) under these unconventional oxidation conditions. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Stabilized nano-sized water droplet carrying water-soluble Co2+ species is employed as a new catalyst system for the oxidation of the alkyl aromatics in the presence of a fluorinated surfactant. This stable system contains no labile C-H structure and can facilitate excellent mixing of catalytic Co(II)/NaBr species, hydrocarbon substrates and oxygen in supercritical carbon dioxide fluid, which is demonstrated to be an excellent alternative solvent system to acetic acid or nitric acid for air oxidation of a number of alkyl aromatic hydrocarbons using Co(II) species at mild conditions. As a result, potential advantages of this 'greener' catalytic method including safer operation, easier separation and purification, higher catalytic activity with selectivity and without using corrosive or oxidation unstable solvent are therefore envisaged.
Resumo:
New "Pt-in-CeO2" catalyst prepared by microemulsion method is shown to give higher activity for a water-gas shift reaction but with no formation of CH4, the side product from hydrogenation of carbon oxides using a hydrogen-rich reformate as compared to conventional "Pt-on-CeO2" catalysts. Detailed characterization by DRIFT analysis and temperature programmed reduction presented in this work clearly suggest the ceria coverage on Pt inhibits the metal from forming a strong CO adsorption.
Resumo:
Conventional supported metal catalysts are metal nanoparticles deposited on high surface area oxide supports with a poorly defined metal−support interface. Typically, the traditionally prepared Pt/ceria catalyzes both methanation (H2/CO to CH4) and water−gas shift (CO/H2O to CO2/H2) reactions. By using simple nanochemistry techniques, we show for the first time that Pt or PtAu metal can be created inside each CeO2 particle with tailored dimensions. The encapsulated metal is shown to interact with the thin CeO2 overlayer in each single particle in an optimum geometry to create a unique interface, giving high activity and excellent selectivity for the water−gas shift reaction, but is totally inert for methanation. Thus, this work clearly demonstrates the significance of nanoengineering of a single catalyst particle by a bottom-up construction approach in modern catalyst design which could enable exploitation of catalyst site differentiation, leading to new catalytic properties.
Resumo:
The strong metal support interaction (SMSI) was first described in 1978 by Tauster [1-4]. The effect was observed as a severely negative effect on CO and H2 uptake on the catalyst after high temperature calcination under reducing conditions (heating above ~ 700 K) [1,2]. It also had a negative effect on the reaction rate for reactions, such as alkane hydrogenolysis [5,6]. It appeared that the effect occurred for catalysts comprised of reducible supports which were treated at elevated temperature in reducing conditions [2-4]. A classic support which has manifested this behaviour in many studies is TiO2. Over the years following the first discovery of SMSI it has been recognised that the effect is not always negative – for instance for the CO-H2 reaction for which it appears to have a positive effect [5,6]. Further it was noted that hydrogen reduction was not necessary to observe the effect of CO adsorption suppression, it also occurs by vacuum treatment [7], though it should be noted that vacuum treatment at elevated temperature is, in effect, a reducing environment.
Resumo:
Conditions of stress, such as myocardial infarction, stimulate up-regulation of heme oxygenase (HO-1) to provide cardioprotection. Here, we show that CO, a product of heme catabolism by HO-1, directly inhibits native rat cardiomyocyte L-type Ca2+ currents and the recombinant alpha1C subunit of the human cardiac L-type Ca2+ channel. CO (applied via a recognized CO donor molecule or as the dissolved gas) caused reversible, voltage-independent channel inhibition, which was dependent on the presence of a spliced insert in the cytoplasmic C-terminal region of the channel. Sequential molecular dissection and point mutagenesis identified three key cysteine residues within the proximal 31 amino acids of the splice insert required for CO sensitivity. CO-mediated inhibition was independent of nitric oxide and protein kinase G but was prevented by antioxidants and the reducing agent, dithiothreitol. Inhibition of NADPH oxidase and xanthine oxidase did not affect the inhibitory actions of CO. Instead, inhibitors of complex III (but not complex I) of the mitochondrial electron transport chain and a mitochondrially targeted antioxidant (Mito Q) fully prevented the effects of CO. Our data indicate that the cardioprotective effects of HO-1 activity may be attributable to an inhibitory action of CO on cardiac L-type Ca2+ channels. Inhibition arises from the ability of CO to promote generation of reactive oxygen species from complex III of mitochondria. This in turn leads to redox modulation of any or all of three critical cysteine residues in the channel's cytoplasmic C-terminal tail, resulting in channel inhibition.
Resumo:
TREK-1 is a background K channel important in the regulation of neuronal excitability. Here, we demonstrate that recombinant human TREK-1 is activated by low concentrations of carbon monoxide (CO) and nitric oxide (NO), applied via their respective donor molecules. Related channels hTASK-1 and hTASK-3 were unaffected by CO. Effects of both CO and NO were prevented by preincubation of cells with the protein kinase G inhibitor, Rp-8-Br-PET-cGMPS. The effects of CO were independent of NO formation. At higher concentrations, both NO and CO were inhibitory. As both NO and CO are important neuronal gasotransmitters and TREK is crucial in regulating neuronal excitability, our results provide a novel means by which these gases may modulate neuronal activity.
Resumo:
When ε-nitro-a,β-unsaturated esters are added to conjugated cyanosulfones in the presence of a bifunctional thiourea catalyst, a highly stereoselective domino reaction occurs to generate complex cyclohexanes with up to four stereogenic centers, one of which is quaternary in nature. Therefore, it is demonstrated that, like nitro compounds, sulfones can undergo an asymmetric intramolecular conjugate addition to r,β- unsaturated esters in the presence of a bifunctional organocatalyst.