6 resultados para carcinogen-induced urothelial bladder lesions
em CentAUR: Central Archive University of Reading - UK
Resumo:
Studies in cell cultures and animal models provide evidence that probiotics can beneficially influence various stages in development of colon cancer including tumor initiation, promotion and metastasis. For example, oral administration of Lactobacillus and Bifidobacterium strains can prevent genotoxic damage to the colonic epithelium (considered to be an early stage of the carcinogenic process). Administration to rats of probiotics reduced the incidence of carcinogen-induced pre-cancerous lesions (aberrant crypt foci) in the colon. Furthermore a combination of Bifidobacterium longum and inulin (a prebiotic) was more effective than either treatment alone. In this latter study, the dietary treatments were given after exposure to the carcinogen, which suggests that the protective effects were being exerted at the promotional phase of carcinogenesis. L. acidophilus feeding has been shown to decrease the incidence of colon tumors in rats challenged with a carcinogen and B. longum reduced the incidence of carcinogeninduced colon, liver and mammary tumors. There is limited evidence from epidemiological studies for protective effects of products containing probiotics in humans, but a number of recent dietary intervention studies in healthy subjects and in polyp and cancer patients have yielded promising results on the basis of biomarkers of cancer risk and grade of colorectal tumors.
Resumo:
Intimin and EspA proteins are virulence factors expressed by attaching and effacing Escherichia coli (AEEC) such as enteropathogenic and enterohaemorrhagic E. coli. The EspA protein makes up a filament structure forming part of the type III secretion system (TTSS) that delivers effector proteins to the host epithelial cell. Bacterial surface displayed intimin interacts with translocated intimin receptor in the host cell membrane leading to intimate attachment of the bacterium and subsequent attaching and effacing lesions. Here, we have assessed the use of recombinant monoclonal antibodies against E. coli O157:147 EspA and intimin for the disruption of AEEC interaction with the host cell. Anti-gamma intimin antibodies did not reduce either adhesion of E. coli O157:H7 to host cell mono-layers or subsequent host cell actin rearrangement. Anti-EspA antibodies similarly had no effect on bacterial adhesion however they had a marked effect upon E. coli O157:H7-induced host cell actin rearrangement, where both monoclonal and polyclonal antibodies completely blocked cytoskeletal changes within the host cell. Furthermore, these anti-EspA antibodies were shown to reduce actin rearrangement induced by some but not all other AEEC serotypes tested. Both polyclonal and monoclonal antibodies could be used to label E. coli O157 EspA filaments and these immunoreagents did not inhibit the formation of such filaments. This is the first report of monoclonal antibodies to EspA capable of disrupting the TTSS function of E. coli O157:H7. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
The characteristics of muscarinic acetylcholine receptor agonist-induced epileptiform bursting seen in immature rat piriform cortex slices in vitro were further investigated using intracellular recording, with particular focus on its postnatal age-dependence (P+14-P+30), pharmacology, site(s) of origin and the likely contribution of the muscarinic acetylcholine receptor agonist-induced post-stimulus slow afterdepolarization and gap junction functionality toward its generation. The muscarinic agonist, oxotremorine-M (10 microM), induced rhythmic bursting only in immature piriform cortex slices; however, paroxysmal depolarizing shift amplitude, burst duration and burst incidence were inversely related to postnatal age. No significant age-dependent changes in neuronal membrane properties or postsynaptic muscarinic responsiveness accounted for this decline. Burst incidence was higher when recorded in anterior and posterior regions of the immature piriform cortex. In adult and immature neurones, oxotremorine-M effects were abolished by M1-, but not M2-muscarinic acetylcholine receptor-selective antagonists. Rostrocaudal lesions, between piriform cortex layers I and II, or layer III and endopiriform nucleus in adult or immature slices did not influence oxotremorine-M effects; however, the slow afterdepolarization in adult (but not immature) lesioned slices was abolished. Gap junction blockers (carbenoxolone or octanol) disrupted muscarinic bursting and diminished the slow afterdepolarization in immature slices, suggesting that gap junction connectivity was important for bursting. Our data show that neural networks within layers II-III function as primary oscillatory circuits for burst initiation in immature rat piriform cortex during persistent muscarinic receptor activation. Furthermore, we propose that muscarinic slow afterdepolarization induction and gap junction communication could contribute towards the increased epileptiform susceptibility of this brain area.
Ascorbate does not protect macrophages against apoptosis induced by oxidised low density lipoprotein
Resumo:
Apoptosis of macrophages and smooth muscle cells is observed in atherosclerotic lesions and may play an important role in the disease progression. Oxidised low density lipoprotein (LDL) is cytotoxic and induces apoptosis in a variety of cell types. We reported previously that ascorbate protects arterial smooth muscle cells from apoptosis induced by oxidised LDL containing the peak levels of lipid hydroperoxides. We now demonstrate that macrophages undergo apoptosis when treated with this species of oxidised LDL, as detected by increased annexin V binding and DNA fragmentation. Ascorbate treatment of macrophages did not protect against the cytotoxicity of oxidised LDL, and modestly increased the levels of annexin V binding and DNA fragmentation. Oxidised LDL treatment also increased the expression of the antioxidant stress protein heme oxygenase-1 in macrophages; however, this increase was markedly attenuated by ascorbate pretreatment. Although apoptosis induced by oxidised LDL was modestly promoted by ascorbate, ascorbate apparently decreased the levels of oxidative stress in macrophages, suggesting that this pro-apoptotic effect was not mediated by a pro-oxidant mechanism, but may instead have been due to intracellular protection of the apoptotic machinery by ascorbate. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Oxygen-free radicals, more generally known as reactive oxygen species (ROS) along with reactive nitrogen species (RNS) are well recognised for playing a dual role as both deleterious and beneficial species. The "two-faced" character of ROS is substantiated by growing body of evidence that ROS within cells act as secondary messengers in intracellular signalling cascades, which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. The cumulative production of ROS/RNS through either endogenous or exogenous insults is termed oxidative stress and is common for many types of cancer cell that are linked with altered redox regulation of cellular signalling pathways. Oxidative stress induces a cellular redox imbalance which has been found to be present in various cancer cells compared with normal cells; the redox imbalance thus may be related to oncogenic stimulation. DNA mutation is a critical step in carcinogenesis and elevated levels of oxidative DNA lesions (8-OH-G) have been noted in various tumours, strongly implicating such damage in the etiology of cancer. It appears that the DNA damage is predominantly linked with the initiation process. This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process. Attention is focused on structural, chemical and biochemical aspects of free radicals, the endogenous and exogenous sources of their generation, the metal (iron, copper, chromium, cobalt, vanadium, cadmium, arsenic, nickel)-mediated formation of free radicals (e.g. Fenton chemistry), the DNA damage (both mitochondrial and nuclear), the damage to lipids and proteins by free radicals, the phenomenon of oxidative stress, cancer and the redox environment of a cell, the mechanisms of carcinogenesis and the role of signalling cascades by ROS; in particular. ROS activation of AP-1 (activator protein) and NF-kappa B (nuclear factor kappa B) signal transduction pathways, which, in turn lead to the transcription of genes involved in cell growth regulatory pathways. The role of enzymatic (superoxide dismutase (Cu. Zn-SOD. Mn-SOD), catalase, glutathione peroxidase) and non-enzymatic antioxidants (Vitamin C, Vitamin E, carotenoids, thiol antioxidants (glutathione, thioredoxin and lipoic acid), flavonoids, selenium and others) in the process of careinogenesis as well as the antioxidant interactions with various regulatory factors, including Ref-1, NF-kappa B, AP-1 are also reviewed. 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Although neurokinin 1 receptor antagonists prevent ethanol (EtOH)-induced gastric lesions, the mechanisms by which EtOH releases substance P (SP) and SP damages the mucosa are unknown. We hypothesized that EtOH activates transient receptor potential vanilloid 1 (TRPV1) on sensory nerves to release SP, which stimulates epithelial neurokinin 1 receptors to generate damaging reactive oxygen species (ROS). SP release was assayed in the mouse stomach, ROS were detected using dichlorofluorescein diacetate, and neurokinin 1 receptors were localized by immunofluorescence. EtOH-induced SP release was prevented by TRPV1 antagonism. High dose EtOH caused lesions, and TRPV1 or neurokinin 1 receptor antagonism and neurokinin 1 receptor deletion inhibited lesion formation. Coadministration of low, innocuous doses of EtOH and SP caused lesions by a TRPV1-independent but neurokinin 1 receptor-dependent process. EtOH, capsaicin, and SP stimulated generation of ROS by superficial gastric epithelial cells expressing neurokinin 1 receptors by a neurokinin 1 receptor-dependent mechanism. ROS scavengers prevented lesions induced by a high EtOH dose or a low EtOH dose plus SP. Gastric lesions are caused by an initial detrimental effect of EtOH, which is damaging only if associated with TRPV1 activation, SP release from sensory nerves, stimulation of neurokinin 1 receptors on epithelial cells, and ROS generation.