4 resultados para carcass composition
em CentAUR: Central Archive University of Reading - UK
Resumo:
A feedlot trial was conducted to determine the effect of dietary vitamin A concentration and roasted soybean (SB) inclusion on carcass characteristics, adipose tissue cellularity, and muscle fatty acid composition. Angus-crossbred steers (n = 168; 295 +/- 1.8 kg) were allotted to 24 pens (7 steers each). Four treatments, in a 2 x 2 factorial arrangement, were investigated: no supplemental vitamin A, no roasted soybeans (NANS); no vitamin A, roasted SB (20% of the diet on a DM basis; NASB); with supplemental (2,700 IU/kg) vitamin A, no roasted SB (WANS); and with supplemental vitamin A, roasted SB (WASB). Diets included high moisture corn, 5% corn silage, 10 to 20% supplement, and 20% roasted SB in the SB treatments on a DM basis. The calculated vitamin A concentration in the basal diet was < 1,300 IU/kg of DM. Blood samples (2 steers/pen) were collected for serum vitamin A determination. Steers were slaughtered after 168 d on feed. Carcass characteristics and LM composition were determined. Fatty acid composition of LM was analyzed, and adipose cellularity in the i.m. and s.c. depots was determined. No vitamin A x SB interactions were detected (P > 0.10) for cattle performance, carcass composition, or muscle fatty acid composition. Low vitamin A diets (NA) did not affect (P > 0.05) ADG, DMI, or G:F. Quality grade tended (P = 0.07) to be greater in NA steers. Marbling scores and the percentage of carcasses grading > or = Choice(-) were 10% greater for NA steers, although these trends were not significant (P = 0.11 and 0.13, respectively). Backfat thickness and yield grade were not affected (P > 0.26) by vitamin A supplementation. Composition of the LM was not affected (P > 0.15) by vitamin A or SB supplementation. Serum retinol at slaughter was 44% lower (P < 0.01) for steers fed NA than for steers supplemented with vitamin A (23.0 vs. 41.1 microg/dL). A vitamin A x SB interaction occurred (P < 0.05) for adipose cellularity in the i.m. depot; when no SB was fed, vitamin A supplementation decreased cell density and increased cell size. However, when SB was fed, vitamin A supplementation did not affect adipose cellularity. Adipose cellularity at the s.c. depot was not affected (P > 0.18) by vitamin A or SB treatments. Fatty acid profile of the LM was not affected by vitamin A (P > 0.05), but SB increased (P < 0.05) PUFA (7.88 vs. 4.30 g/100 g). It was concluded that feeding NA tended to increase marbling without affecting back-fat and yield grade. It appeared that NA induced hyperplasia in the i.m. but not in the s.c. fat depot.
Resumo:
Simmental × Holstein-Friesian steers were offered four forage diets. These comprised grass silage (G); proportionately 0·67 grass silage, proportionately 0·33 maize silage (GGM); 0·33 grass silage, 0·67 maize silage ( MMG); maize silage ( M) from 424 (s.d. = 11·5) kg to slaughter at a minimum weight of 560 kg. Forages were mixed and offered ad libitum. Steers were offered 2 kg of a concentrate daily, the concentrate being formulated such that all steers had similar crude protein intakes across dietary treatments. A sample of steers was slaughtered at the beginning of the experimental period to allow the calculation of the rate of gain of the carcass and its components. Carcass dissection of a sample of steers allowed the development of a prediction equation of carcass composition based on thoracic limb dissection of all carcasses. Forage dry matter intake and live-weight gain increased linearly as maize silage replaced grass silage in the forage mixture, resulting in improvements in food conversion ratio (all P = 0·001). Killing-out proportion increased with maize silage inclusion ( P < 0·001) but fat and conformation scores did not differ significantly between diets. However, increasing maize inclusion in the diet resulted in a greater weight ( P = 0·05) and proportion ( P = 0·008) of fat in the carcass, and significant increases in internal fat deposition. The inclusion of maize led to a progressive increase in the daily gains of carcass ( P < 0·001), and significant increases in the daily gains of both fat ( P < 0·001) and lean tissue ( P < 0·001). Fat colour was more yellow in cattle given diets G and GGM than diets MMG and M ( P < 0·001) and colour intensity was lower on diet M than the other three diets ( P < 0·001). There were no significant differences in any aspects of eating quality between diets. Therefore, maize silage has the potential to reduce the time taken for finishing beef animals to achieve slaughter weight with no apparent detrimental effects on subsequent meat quality.
Resumo:
Lambs (n = 48) were used in a 2 × 2 factorial arrangement of treatments to evaluate effects of inclusion of oil containing PUFA in high-concentrate diets (with or without) and duration of oil supplementation (pre- vs. postweaning) on CLA concentration of muscle and adipose tissue. Lambs were fed preweaning creep diets (with or without oil) corresponding to the dietary lactation treatment diet (with or without oil) of the dam. Dams blocked by lambing date and rearing type were randomly assigned to 1 of 2 lactation dietary treatments with or without oil supplementation. Creep diets contained approximately 70% concentrate and 30% roughage and were provided to lambs for ad libitum intake. At weaning (58.7 ± 2.5 d of age), lambs (n = 48) were randomly assigned within preweaning treatment groups to 1 of 2 postweaning dietary treatments (with or without oil) and 16 pens in a randomized block design, blocked by sex and BW. Postweaning diets were formulated to contain approximately 80% concentrate and 20% roughage and were fed once daily for ad libitum intake. Soybean and linseed oil (2:1, respectively) replaced ground corn and provided 3% additional fat in pre- and postweaning diets. Lambs were slaughtered at 60.3 ± 4.2 kg of BW. A subcutaneous fat (SQ) sample was obtained within 1 h postmortem and a LM sample at the 12th rib was obtained 24 h postmortem, and both were analyzed for fatty acid profile. Feedlot performance and carcass measurements were not affected (P ≥ 0.26) by oil supplementation. Total CLA content of LM and SQ was not affected (P ≥ 0.08) by oil supplementation pre- or postweaning, but trans-10, cis-12 CLA was greater (P = 0.02) in SQ from lambs supplemented with oil postweaning. Total PUFA content in LM was greater (P = 0.02) in lambs supplemented with oil pre- or postweaning as a result of increased concentrations of 18:2cis-9, cis-12 and longer chain PUFA. Conversely, pre- and postweaning oil supplementation resulted in less (P = 0.04) MUFA content in LM. Only postweaning oil supplementation increased (P = 0.001) SQ PUFA content. Feeding oils containing PUFA to lambs pre- and postweaning did not increase CLA content of muscle, whereas postweaning oil supplementation minimally increased CLA concentration of SQ fat. Inclusion of soybean and linseed oil in pre- and postweaning diets increased total PUFA content of SQ fat and muscle tissue without adversely affecting growth performance or carcass characteristics.