15 resultados para carbon footprint, contabilità ambientale, web calculator

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the changing nature of the facilities management (FM) profession, facilities managers are increasingly engaged with the evolving sustainability agenda in the UK and the development or uptake of sustainability policies within their organisations. This study investigates how facilities managers are engaging with the sustainability agenda and the drivers, policy issues and information they use to improve their sustainability performance management. A web based self-administered questionnaire survey of facilities managers in the UK was conducted to identify drivers and issues that influence and support good sustainable practices. A total of 268 facilities managers responded. The results indicate that legislation is the most important driver for the implementation of sustainable practices. Corporate image and Organisational ethos are also recognised. However demand for efficient monitoring, management and reporting on environmental impact is not highly rated even though the top three issues of sustainability managed by facilities managers are energy management, waste and recycling management and carbon footprint. In addition, facilities managers are expected to take ownership of activities assigned to the reduction of carbon emission. Government industries and organisation with high turnover are more likely to have a sustainability policy. Financial constraints are the main barriers while legislations are the main driver for implementing sustainability. For non-profit organisations and the charitable sector, financial constraints are no hindrance to implementing a sustainability policy. The conclusion drawn is that sustainability agendas continue to be influenced by regulated environmental issues rather than a balanced approach which takes into consideration the wider social and economic aspects of sustainability. While this scenario is far from ideal, the expectation is that the organisation will trust FM to take a vital role in delivering a comprehensive sustainability policy due to the rising tide of legislation, public scrutiny, as well as the needed business case for genuinely embracing sustainability. However, as the integration of sustainability with core business strategies is continuously evolving the emphasis on different drivers will vary from organisation to organisation as well as the responsibilities of facilities managers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concern for the environmental impact of organizations’ activities has led to the recognition and demand for organizations to manage and report on their carbon footprint. However, there is no limit as to the areas of carbon footprints required in such annual environmental reports. To deliver improvements in the quality of carbon footprint management and reporting, there is a need to identify the main elements of carbon footprint strategy that can be endorsed, supported and encouraged by facility managers. The study investigates carbon footprint elements managed and reported upon by facility manager in the UK. Drawing on a questionnaire survey of 256 facility managers in the UK, the key elements of carbon footprints identified in carbon footprint reports are examined. The findings indicate that the main elements are building energy consumption, waste disposal and water consumption. Business travel in terms of using public transport, air travel and company cars are also recognized as important targets and objectives for the carbon footprint strategy of several FM (facilities management) organizations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Countless cities are rapidly developing across the globe, pressing the need for clear urban planning and design recommendations geared towards sustainability. This article examines the intersections of Jane Jacobs’ four conditions for diversity with low-carbon and low-energy use urban systems in four cities around the world: Lyon (France), Chicago (United-States), Kolkata (India), and Singapore (Singapore). After reviewing Jacobs’ four conditions for diversity, we introduce the four cities and describe their historical development context. We then present a framework to study the cities along three dimensions: population and density, infrastructure development/use, and climate and landscape. These cities differ in many respects and their analysis is instructive for many other cities around the globe. Jacobs’ conditions are present in all of them, manifested in different ways and to varying degrees. Overall we find that the adoption of Jacobs' conditions seems to align well with concepts of low-carbon urban systems, with their focus on walkability, transit-oriented design, and more efficient land use (i.e., smaller unit sizes). Transportation sector emissions seems to demonstrate a stronger influence from the presence of Jacobs' conditions, while the link was less pronounced in the building sector. Kolkata, a low-income, developing world city, seems to possess many of Jacobs' conditions, while exhibiting low per capita emissions - maintaining both of these during its economic expansion will take careful consideration. Greenhouse gas mitigation, however, is inherently an in situ problem and the first task must therefore be to gain local knowledge of an area before developing strategies to lower its carbon footprint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inspired by the commercial desires of global brands and retailers to access the lucrative green consumer market, carbon is increasingly being counted and made knowable at the mundane sites of everyday production and consumption, from the carbon footprint of a plastic kitchen fork to that of an online bank account. Despite the challenges of counting and making commensurable the global warming impact of a myriad of biophysical and societal activities, this desire to communicate a product or service's carbon footprint has sparked complicated carbon calculative practices and enrolled actors at literally every node of multi-scaled and vastly complex global supply chains. Against this landscape, this paper critically analyzes the counting practices that create the ‘e’ in ‘CO2e’. It is shown that, central to these practices are a series of tools, models and databases which, in building upon previous work (Eden, 2012 and Star and Griesemer, 1989) we conceptualize here as ‘boundary objects’. By enrolling everyday actors from farmers to consumers, these objects abstract and stabilize greenhouse gas emissions from their messy material and social contexts into units of CO2e which can then be translated along a product's supply chain, thereby establishing a new currency of ‘everyday supply chain carbon’. However, in making all greenhouse gas-related practices commensurable and in enrolling and stabilizing the transfer of information between multiple actors these objects oversee a process of simplification reliant upon, and subject to, a multiplicity of approximations, assumptions, errors, discrepancies and/or omissions. Further the outcomes of these tools are subject to the politicized and commercial agendas of the worlds they attempt to link, with each boundary actor inscribing different meanings to a product's carbon footprint in accordance with their specific subjectivities, commercial desires and epistemic framings. It is therefore shown that how a boundary object transforms greenhouse gas emissions into units of CO2e, is the outcome of distinct ideologies regarding ‘what’ a product's carbon footprint is and how it should be made legible. These politicized decisions, in turn, inform specific reduction activities and ultimately advance distinct, specific and increasingly durable transition pathways to a low carbon society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building refurbishment is key to reducing the carbon footprint and improving comfort in the built environment. However, quantifying the real benefit of a facade change, which can bring advantages to owners (value), occupants (comfort) and the society (sustainability), is not a simple task. At a building physics level, the changes in kWh per m2 of heating / cooling load can be readily quantified. However, there are many subtle layers of operation and mainte-nance below these headline figures which determine how sustainable a building is in reality, such as for example quality of life factors. This paper considers the range of approached taken by a fa/e refurbishment consortium to assess refurbishment solutions for multi-storey, multi-occupancy buildings and how to critically evaluate them. Each of the applued tools spans one or more of the three building parameters of people, product and process. 'De-cision making' analytical network process and parametric building analysis tools are described and their potential impact on the building refurbishment process evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many weeds occur in patches but farmers frequently spray whole fields to control the weeds in these patches. Given a geo-referenced weed map, technology exists to confine spraying to these patches. Adoption of patch spraying by arable farmers has, however, been negligible partly due to the difficulty of constructing weed maps. Building on previous DEFRA and HGCA projects, this proposal aims to develop and evaluate a machine vision system to automate the weed mapping process. The project thereby addresses the principal technical stumbling block to widespread adoption of site specific weed management (SSWM). The accuracy of weed identification by machine vision based on a single field survey may be inadequate to create herbicide application maps. We therefore propose to test the hypothesis that sufficiently accurate weed maps can be constructed by integrating information from geo-referenced images captured automatically at different times of the year during normal field activities. Accuracy of identification will also be increased by utilising a priori knowledge of weeds present in fields. To prove this concept, images will be captured from arable fields on two farms and processed offline to identify and map the weeds, focussing especially on black-grass, wild oats, barren brome, couch grass and cleavers. As advocated by Lutman et al. (2002), the approach uncouples the weed mapping and treatment processes and builds on the observation that patches of these weeds are quite stable in arable fields. There are three main aspects to the project. 1) Machine vision hardware. Hardware component parts of the system are one or more cameras connected to a single board computer (Concurrent Solutions LLC) and interfaced with an accurate Global Positioning System (GPS) supplied by Patchwork Technology. The camera(s) will take separate measurements for each of the three primary colours of visible light (red, green and blue) in each pixel. The basic proof of concept can be achieved in principle using a single camera system, but in practice systems with more than one camera may need to be installed so that larger fractions of each field can be photographed. Hardware will be reviewed regularly during the project in response to feedback from other work packages and updated as required. 2) Image capture and weed identification software. The machine vision system will be attached to toolbars of farm machinery so that images can be collected during different field operations. Images will be captured at different ground speeds, in different directions and at different crop growth stages as well as in different crop backgrounds. Having captured geo-referenced images in the field, image analysis software will be developed to identify weed species by Murray State and Reading Universities with advice from The Arable Group. A wide range of pattern recognition and in particular Bayesian Networks will be used to advance the state of the art in machine vision-based weed identification and mapping. Weed identification algorithms used by others are inadequate for this project as we intend to collect and correlate images collected at different growth stages. Plants grown for this purpose by Herbiseed will be used in the first instance. In addition, our image capture and analysis system will include plant characteristics such as leaf shape, size, vein structure, colour and textural pattern, some of which are not detectable by other machine vision systems or are omitted by their algorithms. Using such a list of features observable using our machine vision system, we will determine those that can be used to distinguish weed species of interest. 3) Weed mapping. Geo-referenced maps of weeds in arable fields (Reading University and Syngenta) will be produced with advice from The Arable Group and Patchwork Technology. Natural infestations will be mapped in the fields but we will also introduce specimen plants in pots to facilitate more rigorous system evaluation and testing. Manual weed maps of the same fields will be generated by Reading University, Syngenta and Peter Lutman so that the accuracy of automated mapping can be assessed. The principal hypothesis and concept to be tested is that by combining maps from several surveys, a weed map with acceptable accuracy for endusers can be produced. If the concept is proved and can be commercialised, systems could be retrofitted at low cost onto existing farm machinery. The outputs of the weed mapping software would then link with the precision farming options already built into many commercial sprayers, allowing their use for targeted, site-specific herbicide applications. Immediate economic benefits would, therefore, arise directly from reducing herbicide costs. SSWM will also reduce the overall pesticide load on the crop and so may reduce pesticide residues in food and drinking water, and reduce adverse impacts of pesticides on non-target species and beneficials. Farmers may even choose to leave unsprayed some non-injurious, environmentally-beneficial, low density weed infestations. These benefits fit very well with the anticipated legislation emerging in the new EU Thematic Strategy for Pesticides which will encourage more targeted use of pesticides and greater uptake of Integrated Crop (Pest) Management approaches, and also with the requirements of the Water Framework Directive to reduce levels of pesticides in water bodies. The greater precision of weed management offered by SSWM is therefore a key element in preparing arable farming systems for the future, where policy makers and consumers want to minimise pesticide use and the carbon footprint of farming while maintaining food production and security. The mapping technology could also be used on organic farms to identify areas of fields needing mechanical weed control thereby reducing both carbon footprints and also damage to crops by, for example, spring tines. Objective i. To develop a prototype machine vision system for automated image capture during agricultural field operations; ii. To prove the concept that images captured by the machine vision system over a series of field operations can be processed to identify and geo-reference specific weeds in the field; iii. To generate weed maps from the geo-referenced, weed plants/patches identified in objective (ii).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The building sector is one of the highest consumers of energy in the world. This has led to high dependency on using fossil fuel to supply energy without due consideration to its environmental impact. Saudi Arabia has been through rapid development accompanied by population growth, which in turn has increased the demand for construction. However, this fast development has been met without considering sustainable building design. General design practices rely on using international design approaches and features without considering the local climate and aspects of traditional passive design. This is by constructing buildings with a large amount of glass fully exposed to solar radiation. The aim of this paper is to investigate the development of sustainability in passive design and vernacular architecture. Furthermore, it compares them with current building in Saudi Arabia in terms of making the most of the climate. Moreover, it will explore the most sustainable renewable energy that can be used to reduce the environmental impact on modern building in Saudi Arabia. This will be carried out using case studies demonstrating the performance of vernacular design in Saudi Arabia and thus its benefits in terms of environmental, economic and social sustainability. It argues that the adoption of a hybrid approach can improve the energy efficiency as well as reduce the carbon footprint of buildings. This is by combining passive design, learning from the vernacular architecture and implementing innovative sustainable technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commercial kitchens often leave a large carbon footprint. A new dataset of energy performance metrics from a leading industrial partner is presented. Categorising these types of buildings is challenging. Electricity use has been analysed using data from automated meter readings (AMR) for the purpose of benchmarking and discussed in terms of factors such as size and food output. From the analysed results, consumption is found to be almost double previous sector estimates of 6480 million kWh per year. Recommendations are made to further improve the current benchmarks in order to attain robust, reliable and transparent figures, such as the introduction of normalised performance indicators to include kitchen size (m2) and kWh per thousand-pound turnover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commercial kitchens are one of the most profligate users of gas, water and electricity in the UK and can leave a large carbon footprint. It is estimated that the total energy consumption of Britain’s catering industry is in excess of 21,600 million kWh per year. In order to facilitate appropriate energy reduction within licensed restaurants, energy use must be translated into a form that can be compared between kitchens to enable operators to assess how they are improving and to allow rapid identification of facilities which require action. A review of relevant literature is presented and current benchmarking methods are discussed in order to assist in the development and categorisation of benchmarking energy reduction in commercial kitchens. Energy use within UK industry leading brands is discussed for the purpose of benchmarking in terms of factors such as size and output.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to develop a mathematical model based on semi-group theory, which allows to improve quality of service (QoS), including the reduction of the carbon path, in a pervasive environment of a Mobile Virtual Network Operator (MVNO). This paper generalise an interrelationship Machine to Machine (M2M) mathematical model, based on semi-group theory. This paper demonstrates that using available technology and with a solid mathematical model, is possible to streamline relationships between building agents, to control pervasive spaces so as to reduce the impact in carbon footprint through the reduction of GHG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the economics of Enhanced Landfill Mining (ELFM) both from a private point of view as well as from a society perspective. The private potential is assessed using a case study for which an investment model is developed to identify the impact of a broad range of parameters on the profitability of ELFM. We found that especially variations in Waste-to-Energy (WtE efficiency, electricity price, CO2-price, WtE investment and operational costs) and ELFM support explain the variation in economic profitability measured by the Internal Rate of Return. To overcome site-specific parameters we also evaluated the regional ELFM potential for the densely populated and industrial region of Flanders (north of Belgium). The total number of potential ELFM sites was estimated using a 5-step procedure and a simulation tool was developed to trade-off private costs and benefits. The analysis shows that there is a substantial economic potential for ELFM projects on the wider regional level. Furthermore, this paper also reviews the costs and benefits from a broader perspective. The carbon footprint of the case study was mapped in order to assess the project’s net impact in terms of greenhouse gas emissions. Also the impacts of nature restoration, soil remediation, resource scarcity and reduced import dependence were valued so that they can be used in future social cost-benefit analysis. Given the complex trade-off between economic, social and environmental issues of ELFM projects, we conclude that further refinement of the methodological framework and the development of the integrated decision tools supporting private and public actors, are necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessments concerning the effects of climate change, water resource availability and water deprivation in West Africa have not frequently considered the positive contribution to be derived from collecting and reusing water for domestic purposes. Where the originating water is taken from a clean water source and has been used the first time for washing or bathing, this water is commonly called “greywater”. Greywater is a prolific resource that is generated wherever people live. Treated greywater can be used for domestic cleaning, for flushing toilets where appropriate, for washing cars, sometimes for watering kitchen gardens, and for clothes washing prior to rinsing. Therefore, a large theoretical potential exists to increase total water resource availability if greywater were to be widely reused. Locally treated greywater reduces the distribution network requirement, lower construction effort and cost and, wherever possible, minimising the associated carbon footprint. Such locally treated greywater offers significant practical opportunities for increasing the total available water resources at a local level. The reuse of treated greywater is one important action that will help to mitigate the reducing availability of clean water supplies in some areas, and the expected mitigation required in future aligns well with WHO/UNICEF (2012) aspirations. The evaluation of potential opportunities for prioritising greywater systems to support water reuse takes into account the availability of water resources, water use indicators and published estimates in order to understand typical patterns of water demand. The approach supports knowledge acquisition regarding local conditions for enabling capacity building for greywater reuse, the understanding of systems that are most likely to encourage greywater reuse, and practices and future actions to stimulate greywater infrastructure planning, design and implementation. Although reuse might be considered to increase the uncertainty of achieving a specified quality of the water supply, robust methods and technologies are available for local treatment. Resource strategies for greywater reuse have the potential to consistently improve water efficiency and availability in water impoverished and water stressed regions of Ghana and West Africa. Untreated greywater is referred to as “greywater”; treated greywater is referred to as “treated greywater” in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eddy-covariance measurements of carbon dioxide fluxes were taken semi-continuously between October 2006 and May 2008 at 190 m height in central London (UK) to quantify emissions and study their controls. Inner London, with a population of 8.2 million (~5000 inhabitants per km2) is heavily built up with 8% vegetation cover within the central boroughs. CO2 emissions were found to be mainly controlled by fossil fuel combustion (e.g. traffic, commercial and domestic heating). The measurement period allowed investigation of both diurnal patterns and seasonal trends. Diurnal averages of CO2 fluxes were found to be highly correlated to traffic. However changes in heating-related natural gas consumption and, to a lesser extent, photosynthetic activity that controlled the seasonal variability. Despite measurements being taken at ca. 22 times the mean building height, coupling with street level was adequate, especially during daytime. Night-time saw a higher occurrence of stable or neutral stratification, especially in autumn and winter, which resulted in data loss in post-processing. No significant difference was found between the annual estimate of net exchange of CO2 for the expected measurement footprint and the values derived from the National Atmospheric Emissions Inventory (NAEI), with daytime fluxes differing by only 3%. This agreement with NAEI data also supported the use of the simple flux footprint model which was applied to the London site; this also suggests that individual roughness elements did not significantly affect the measurements due to the large ratio of measurement height to mean building height.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.