2 resultados para carbachol

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The involvement of pertussis toxin (PTX)-sensitive and -insensitive pathways in the activation of the mitogen-activated protein kinase (MAPK) cascade was examined in ventricular cardiomyocytes cultured from neonatal rats. A number of agonists that activate heterotrimeric G-protein-coupled receptors stimulated MAPK activity after exposure for 5 min. These included foetal calf serum (FCS), endothelin-1 (these two being the most effective of the agonists examined), phenylephrine, endothelin-3, lysophosphatidic acid, carbachol, isoprenaline and angiotensin II. Activation of MAPK and MAPK kinase (MEK) by carbachol returned to control levels within 30-60 min, whereas activation by FCS was more sustained. FPLC on Mono Q showed that carbachol and FCS activated two peaks of MEK and two peaks of MAPK (p42MAPK and p44MAPK). Pretreatment of cells with PTX for 24 h inhibited the activation of MAPK by carbachol, FCS and lysophosphatidic acid, but not that by endothelin-1, phenylephrine or isoprenaline. Involvement of G-proteins in the activation of the cardiac MAPK cascade was demonstrated by the sustained (PTX-insensitive) activation of MAPK (and MEK) after exposure of cells to AlF4-. AlF4- activated PtdIns hydrolysis, as did endothelin-1, endothelin-3, phenylephrine and FCS. In contrast, the effect of lysophosphatidic acid on PtdIns hydrolysis was small and carbachol was without significant effect even after prolonged exposure. We conclude that PTX-sensitive (i.e. Gi/G(o)-linked) and PTX-insensitive (i.e. Gq/Gs-linked) pathways of MAPK activation exist in neonatal ventricular myocytes. FCS may stimulate the MAPK cascade through both pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The small G protein Ras has been implicated in hypertrophy of cardiac myocytes. We therefore examined the activation (GTP loading) of Ras by the following hypertrophic agonists: phorbol 12-myristate 13-acetate (PMA), endothelin-1 (ET-1), and phenylephrine (PE). All three increased Ras.GTP loading by 10-15-fold (maximal in 1-2 min), as did bradykinin. Other G protein-coupled receptor agonists (e.g. angiotensin II, carbachol, isoproterenol) were less effective. Activation of Ras by PMA, ET-1, or PE was reduced by inhibition of protein kinase C (PKC), and that induced by ET-1 or PE was partly sensitive to pertussis toxin. 8-(4-Chlorophenylthio)-cAMP (CPT-cAMP) did not inhibit Ras.GTP loading by PMA, ET-1, or PE. The association of Ras with c-Raf protein was increased by PMA, ET-1, or PE, and this was inhibited by CPT-cAMP. However, only PMA and ET-1 increased Ras-associated mitogen-activated protein kinase kinase 1-activating activity, and this was decreased by PKC inhibition, pertussis toxin, and CPT-cAMP. PMA caused the rapid appearance of phosphorylated (activated) extracellular signal-regulated kinase in the nucleus, which was inhibited by a microinjected neutralizing anti-Ras antibody. We conclude that PKC- and Gi-dependent mechanisms mediate the activation of Ras in myocytes and that Ras activation is required for stimulation of extracellular signal-regulated kinase by PMA.